JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 3 (2016): Journal of the Chilean Chemical Society
Original Research Papers

TRANSLOCATION OF TRANSITION METALS DURING THE DEGRADATION OF PINUS RADIATA BY GLOEOPHYLLUM TRABEUM ON THE FOREST SOIL

Claudio Pozo
Centro de Investigación de Polímeros Avanzados (CIPA)
Victoria Melín
Centro de Biotecnología, Universidad de Concepción
Juan Pedro Elissetche
Centro de Biotecnología, Universidad de Concepción
David Contreras
Centro de Biotecnología, Universidad de Concepción Facultad de Ciencias Químicas, Universidad de Concepción
Juanita Freer
Centro de Biotecnología, Universidad de Concepción Facultad de Ciencias Químicas, Universidad de Concepción
Jaime Rodríguez
Centro de Biotecnología, Universidad de Concepción Facultad de Ciencias Forestales, Universidad de Concepción
Published September 10, 2016
Keywords
  • Brown rot,
  • Wood biodegradation,
  • Metal translocation,
  • Gloeophyllum trabeum,
  • Forest soil,
  • Transition metals
  • ...More
    Less
How to Cite
Pozo, C., Melín, V., Elissetche, J. P., Contreras, D., Freer, J., & Rodríguez, J. (2016). TRANSLOCATION OF TRANSITION METALS DURING THE DEGRADATION OF PINUS RADIATA BY GLOEOPHYLLUM TRABEUM ON THE FOREST SOIL. Journal of the Chilean Chemical Society, 61(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/99

Abstract

Brown rot fungi (BRF) are highly destructive wood degraders characterized by extensive degradation and mineralization of cellulose and hemicellulose, in most of the cases without causing a substantial removal of lignin. BRF have not a complete cellulase complex neither ligninolytic enzymes, therefore, has been hypothesized that to degrade wood components, a non-enzymatic mechanism based on ●OH radicals production through Fenton reaction is also involved. The availability of iron limits the Fenton reaction in wood biodegradation by BRF, because this metal (and other transition metals) is found in small amounts in wood. For this reason, it has been postulated that the fungus transport metals from the soil. To study the effect of soil and transition metal translocation (Fe, Cu, and Mn) on wood biodegradation by the BRF Gloeophyllum trabeum, Pinus radiata wood chips (20 years old) were incubated with forest soil in stationary tray bioreactor for a period until 16 weeks. Translocation of transition metals, mass and wood components (extractives, carbohydrates, and lignin) loss, the decrease of holocellulose viscosity and oxalic acid production were determined at different intervals of time.

Wood on soil showed a high translocation of transition metals mainly Fe. Translocation of soil metals into the wood was relevant for improving fungal growth and wood decay, which is correlated significantly with higher loss mass and wood components compared with degradation without soil. 

References

  1. S. M. Hyde and P. M. Wood, Microbiology, 1997, 143(1), 259-266.
  2. B. Goodell, J. Jellison, J. Liu, G. Daniel, A. Paszczynski, F. Fekete, S. Krishnamurthy, L. Jun, and G. Xu, J. Biotechnol., 1997, 53(2-3), 133-162.
  3. Z. Kerem, K. A. Jensen, and K. E. Hammel, FEBS Lett., 1999, 446(1), 49- 54.
  4. K. A. Jensen, Jr., C. J. Houtman, Z. C. Ryan, and K. E. Hammel, Appl. Environ. Microbiol., 2001, 67(6), 2705-2711.
  5. K. E. Hammel, A. N. Kapich, J. K. A. Jensen, and Z. C. Ryan, Enzyme Microb. Technol., 2002, 30(4), 445-453.
  6. J. Rodriguez, A. Ferraz, and M. P. Mello: ‘Role of metals in wood biodegradation’, in ‘Wood Deterioration and Preservation. ACS Symposium Series 845’, (eds. B. Goodell, et al.), 154–174; 2003, Washington DC American Chemical Society.
  7. B. Goodell, G. Daniel, J. Jellison, and Y. Qian, Holzforschung, 2006, 60(6), 630-636.
  8. M. R. Suzuki, C. G. Hunt, C. J. Houtman, Z. D. Dalebroux, and K. E. Hammel, Environ. Microbiol., 2006, 8(12), 2214-2223.
  9. B. Goodell: ‘Brown-rot fungal degradation of wood: our evolving view’, in ‘Wood deterioration and preservation. ACS Symposium series 845’, (eds. B. Goodell, et al.), 97-118; 2003, Washington DC.
  10. M. Lopretti, D. Cabella, J. Morais, and A. Rodrigues, Process Biochem., 1998, 33(6), 657-661.
  11. T. R. Filley, G. D. Cody, B. Goodell, J. Jellison, C. Noser, and A. Ostrofsky, Org. Geochem., 2002, 33(2), 111-124.
  12. D. J. Yelle, J. Ralph, F. Lu, and K. E. Hammel, Environ. Microbiol., 2008, 10(7), 1844-1849.
  13. D. J. Yelle, D. Wei, J. Ralph, and K. E. Hammel, Environ. Microbiol., 2011, 13(4), 1091-1100.
  14. J. W. G. Cairney, Mycol. Res., 2005, 109(1), 7-20.
  15. L. Boddy and T. H. Jones: ‘Mycelial responses in heterogeneous environments: parallels with macroorganisms’, in ‘Fungi in the environment’, (eds. G. Dadd, et al.), 112-140; 2007, Cambridge, UK, Cambridge University Press.
  16. L. Boddy, Mycol. Res., 1993, 97(6), 641-655.
  17. J. H. Connolly and J. Jellison, Int. Biodeterior. Biodegrad., 1997, 39(2-3), 181-188.
  18. B. r. Lindahl, R. Finlay, and S. Olsson, New Phytol., 2001, 150(1), 189- 194.
  19. J. M. Wells, L. Boddy, and R. Evans, New Phytol., 1995, 129(3), 467-476.
  20. W. P. Henry: ‘Non-enzymatic iron, manganese, and copper chemistry of potential importance in wood decay’, in ‘Wood deterioration and preservation. ACS Symposium series 845’, (eds. B. Goodell, et al.), 175– 195; 2003, Washington DC.
  21. J. Jellison, J. Connolly, B. Goodell, B. Doyle, B. Illman, F. Fekete, and A. Ostrofsky, Int. Biodeterior. Biodegrad., 1997, 39(2-3), 165-179.
  22. S. M. Kremer and P. M. Wood, Eur. J. Biochem., 1992, 208(3), 807-814.
  23. G. Xu and B. Goodell, J. Biotechnol., 2001, 87(1), 43-57.
  24. F. Green, M. J. Larsen, J. E. Winandy, and T. L. Highley, Material und Organismen, 1991, 26(3), 191-213.
  25. J. A. Micales, Int. Biodeterior. Biodegrad., 1997, 39(2-3), 125-132.
  26. V. Arantes, Y. Qian, A. M. F. Milagres, J. Jellison, and B. Goodell, Int. Biodeterior. Biodegrad., 2009, 63(4), 478-483.
  27. E. P. Burford, M. Fomina, and G. M. Gadd, Mineral. Mag., 2003, 67, 1127-1155.
  28. G. M. Gadd, Mycol. Res., 2007, 111(1), 3-49.
  29. A. Ostrofsky, J. Jellison, K. T. Smith, and W. C. Shortle, Can. J. For. Res., 1997, 27(4), 567–571.
  30. J.-P. Elissetche, A. Ferraz, J. Freer, and J. Rodríguez, Int. Biodeterior. Biodegrad., 2006, 57(3), 174-178.
  31. J. S. Schilling and J. Jellison, Appl. Environ. Microbiol., 2006, 72(8), 5662-5665.
  32. M. Akhtar, C. Attridge, C. G. Myers, K. T. Kirk, and R. A. Blanchette, Tappi J., 1992, 75(2), 105-109.
  33. D. Harvey: ‘Modern analytical chemistry’; 2000, New York, USA.
  34. C. W. Dence: ‘The Determination of Lignin’, in ‘Methods in Lignin Chemistry’, (eds. S. Lin, et al.), 33-61; 1992, Springer Berlin Heidelberg.
  35. A. Ferraz, J. Baeza, J. Rodriguez, and J. Freer, Bioresour. Technol., 2000, 74(3), 201-212.
  36. V. O. F. Solomon and B. S. Gotesman, Die Makromolekulare Chemie, 1967, 104(1), 177-184.
  37. C. Hunt, W. Kenealy, E. Horn, and C. Houtman, Holzforschung, 2004, 58, 434–439.
  38. J. E. Winandy and J. J. Morrell, Wood Fiber Sci., 1992, 25(3), 278–288.
  39. A. Machuca and A. Ferraz, Enzyme Microb. Technol., 2001, 29(6-7), 386- 391.
  40. I. Irbe, I. Andersone, B. Andersons, and J. Chirkova, Int. Biodeterior. Biodegrad., 2001, 47(1), 37-45.
  41. I. Irbe, B. Andersons, J. Chirkova, U. Kallavus, I. Andersone, and O. Faix, Int. Biodeterior. Biodegrad., 2006, 57(2), 99-106.
  42. L. Jin, T. P. Schultz, and D. D. Nicholas, Holzforschung, 1990, 44(2), 133- 138.
  43. K. Fackler, J. S. Stevanic, T. Ters, B. Hinterstoisser, M. Schwanninger, and L. Salmén, Enzyme Microb. Technol., 2010, 47(6), 257-267.
  44. J. F. Stevenson: ‘Humus Chemistry: Genesis, Composition, Reactions’, 446; 1994, New York, John Wiley & Sons.
  45. G. Davies, A. Fataftah, A. Cherkasskiy, E. A. Ghabbour, A. Radwan, S. A. Jansen, S. Kolla, M. D. Paciolla, L. T. Sein, W. Buermann, M. Balasubramanian, J. Budnick, and B. Xing, J. Chem. Soc., Dalton Trans., 1997, 21, 4047–4060.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP