JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 4 (2020): Journal of the Chilean Chemical Society
Original Research Papers

BIPHASIC HYDROGENATION OF EUGENOL WITH RUTHENIUM AND RHODIUM NANOPARTICLES STABILIZED IN IONIC LIQUIDS

Isis Crespo
Experimental Pedagogical University Libertador. Maracay
Bio
Olgioly Domínguez
Central University of Venezuela. Caracas
Bio
Pablo Baricelli
University of Carabobo. Valencia
Bio
Margarita Borusiak
University of Carabobo. Valencia
Bio
Ofelia Omaña
University of Carabobo. Valencia
Bio
William Castro
Venezuelan Institute of Scientific Research. Caracas
Bio
Merlin Rosales
University of Zulia, Maracaibo
Bio
Published November 11, 2020
Keywords
  • Nanoparticles,
  • ionic liquids,
  • biphasic hydrogenation,
  • eugenol
How to Cite
Crespo, I., Domínguez, O., Baricelli, P., Borusiak, M., Omaña, O., Castro, W., & Rosales, M. (2020). BIPHASIC HYDROGENATION OF EUGENOL WITH RUTHENIUM AND RHODIUM NANOPARTICLES STABILIZED IN IONIC LIQUIDS. Journal of the Chilean Chemical Society, 65(4), 4982-4987. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/831

Abstract

The purpose of this study was to evaluate on the catalytic activity nanostructured systems of ruthenium and rhodium stabilized in ionic liquids derived from imidazole: IL1= butylmethyllimidazole tetrafluoroborate [BMIM][BF4] and IL2= butylmethylimidazole hexafluorophosphate [BMIM][PF6] in the biphasic hydrogenation of eugenol under mild reaction conditions T= 80ºC, P= 100psi during 4 hours. The metallic nanoparticles (NPs-M) were synthesized using the ligand hydrogenation displacement reaction for the ruthenium III tris(acetylacetonate), [Ru(acac)3], and bis-μ-cloro-di(1,5-ciclooctadieno) dirhodium(I), [Rh(COD)Cl]2, showing a mean particle size between (2.00±0.04) nm and (4.0±0.2) nm. The nanostructured systems Rh/IL2, Ru/IL2 and Ru/IL1 show similar activities and different from the Rh/IL1 system. On the other hand, the systems stabilized in the IL1 were more selective towards the formation of the 2-methoxy-4-propylphenol than the systems stabilized in the IL2. Nevertheless, in general, the catalysts were good for hydrogenating eugenol, resulting in Rh/IL1 nanoparticles less reactive than Rh/IL2, Ru/IL1 and Ru/IL2.

References

  1. P. Baricelli, L. Melean, M. Rodríguez, M. dos Santos, M. Rosales and E. Escalante. Biphasic Hydrogenation and Hydroformylation of Natural Olefins with a Binuclear Rhodium Complex in Ionic Liquid/Toluene. J. Chem. Eng. 7, 299-305, (2013).
  2. R. González. Eugenol: propiedades farmacológicas y toxicológicas. Ventajas y desventajas de usos. Rev. Cubana Estomatol. V.9,nº2. (2002).
  3. K. Date, P. Kulkarni. Assessment of Rasadanti in various oral disorders. Ayuved Res. Pap, II, 165-175, (1995).
  4. Bhimrao. K. Jadhau; Kishanchandra. R. Khandelwal; Avant. R. Ketkar; Sambhaji. S. Pisal. Formulation and evaluation of Mucoadhesive tablets containing eugenol for the treatment of periodontal diseases. Vol 30, Nº 2, pp. 195-203, 2004.
  5. M. Wie, M. Won, J. Lee; H. Suh; D. Song, Y. Kin. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultives. Neurosci. Lett. 225(2), 93-96, (1997).
  6. S. Laekeman, V. Hoof, A. Haemers, V. Berghe, A. Harman, A. Vlietink. Eugenol a valuable compound for in-vitro experimental research and worthwhile for further in vivo investigation phytother. Res. 4(3); 99-96. (1990).
  7. Atsusane, T. Clove oil or dehydroeugenol for controlling oxygen in the human body. Japan. Kokai Tokkyo Koho, 227, 6, (1991).
  8. Hiroaki, N; Ryui, U; Nozamik, K.S; Kenji, K.J. Role of endotheliom and adventitia on eugenol induced relaxation of rabbit ear artery precontracted by histamine smooth muscle. Res.1998, 34(3), (123-127).
  9. Demilo AB, Cunningham RT & McGovern TP. Structural of Methyl Eugenol and Their Attractiveness to the Oriental Fruit Fly (Diptera: Tephritidae). Journal of Economic Entomology. 87 (4): 957-964, (1994).
  10. A. Kadarohman. Mempelajari Mekanisme Dan Kontrol Reaksi Isomerisasi Eugenol Menjadi Isoeugenol. Thesis of FMIPA UGM Yogyakarta: Unpublication. (1994).
  11. A. Kadarohman. Isomerisasi, Hidrogenasi Eugenol, Dan Síntesis Turunan Kariofilena. Dissertation of FMIPA UGM Yogyakarta: Unpublication. (2003).
  12. Z. Cong, X. Jing, S. Liang, X. Hongchuan, L. Sen, X. Lishu, L. Xuebing. Aqueous-phase hydrodeoxygenation of lignin monomer eugenol:Influence of Si/Al ratio of HZSM-5 on catalytic performances. Catal. Today (2014).
  13. L. Petitjean , R. Gagne, E. Beach., D. Xiao and P. Anastas. Highly selective hydrogenation and hydrogenolysis using a copper-doped porous metal oxide catalyst. Green Chemistry, 18(1), 150-156, (2016).
  14. L. Meleán, P. Baricelli, M. Rosales. Hidrogenación e hidroformilación de terpenos, alilbencenos y aldehídos α,β insaturados con complejos hidrosolubles de Rodio y Rutenio en medio bifásico. Tesis Doctoral. UCV, Ven, 8-241, (2010).
  15. J. Dupont, C. Consorte, P. Suarez, R. De Souza. Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. [1H-Imidazolium, 1-butyl-3-methyl-, chloride (1−); 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate (1−); 1H-Imidazolium, 1-butyl-3-methyl-, hexafluorophosphate (1−) ]. Org. Syntheses. Coll. 10; 184, (2004).
  16. J. Dupont, C. Consorti,P. Suarez, R. De Souza. Preparation of 1-butyl-3-methyl imidazolium-based room temperatura Ionic liquids. Org. Synth, 79, 236. (2002).
  17. X. Dan-Qian, H. Zhi-Yan, L. Wei-Wei, L. Shu-Ping, X. Zhen-Yuan. Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. Journal of molecular catalysis A Chemical 235; 137-142. (2005).
  18. P. Suarez, J. Dullius; S. Einloft; R. de Souza and J. Dupont; Org. Syntheses. The use of new ionic liquids in two-phase catalytic hidrogenation reaction by Rhodium complexes; Elsivier science, 2 ; 1217-1219, (1996).
  19. O. Domínguez, E. Escalante, D. Manaure; E. Cañizales, R. Machado. Actividad catalítica de nanopartículas de Rodio estabilizados en diferentes líquidos iónicos en reacciones de hidrogenación del ciclohexeno y del benceno. Revista de la facultad de ingeniería UCV, 27(3), 95-104, (2012).
  20. Jackson D. Scholten, Martin H.G. Prechtl, and Jairton Dupont. Formation of Nanoparticles Assisted by Ionic Liquids. Handbook of Green Chemistry Volume 8: Green Nanoscience, First Edition (2012).
  21. M. Sosa, M. Bullón, C. Urbina, G. Jorge, J. Martínez. Estudio de nanopartículas bimetálicas de Rh-Pd sintetizadas por vía electroquímica. Avances en ciencias e ingeniería. Research Gate, Vol 2(3), pp.889-99. (2011).
  22. M. Ramírez, K. Philippot, B. Chaudret. Influencia del medio de reacción en la estabilización de nanoestructuras de Rodio. Ingeniería investigación y tecnología, 16 (2). 225-237. (2015).
  23. M. Prechtl, P. Campbell, J. Scholten, G. Frases, G. Machado, C. Santini, J. Dupont, Y. Chauvin. Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes. Nanoscale, 2, 2601-2606, (2010).
  24. M. Prechtl, M Scariot, J. Sholten, G. Machado, S. Texeira and J. Dupont. Nanoscale Ru(0) particles Arene hydrogenation catalysts in imidazolium ionic liquids inorganic chemistry, vol 47, Nº 19, (2008).
  25. A. Kadarohman. Kinetics of complex reaction of eugenol hydrogenation to 2-methoxy-4-propylphenol in Pd/Y catalyst. Journal ILMU DASAR.vol11,Nº 1, 1-7. (2010).
  26. Speziali, M. G; Moura, F.C.C; Robles-Dutenhefner, P.A; Araujo. M.H; Gusevskaya, E.V;Dos Santos. E.N. Selective hydrogenation of myrcene catalyzed by complexes of ruthenium, chromium, iridium and rhodium. J.Mol.Catl.A: Chem, 239,10. (2005).
  27. Bond, G.C; Louis,C y Thompson, D.T.(2006). Catalysis by Gold. (1a. ed;vol.6).Londres. Imperial. College.Press.
  28. Corain, B; Schimid, G y Toshima, N. (2008). Metal nanoclusters in catalysis and materials science the issue of control. Ansterdam: Elsevier.
  29. R. Zanella. Aplicación de los nanomateriales en catálisis. Mundo nano. Vol.7, nº 12, (2014).
  30. J. Dupont y J. Scholten. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev, 39, 1780–1804, (2010).
  31. S. Kang, K. Char, Y. Kang. Chem Mater 20:1308–1311, (2008).
  32. J. Dupont, J. Braz. Chem.Soc.15, 341. (2004).
  33. P. Migowski, G. Machado, S. Texeira., A. Traverse, J. Dupont. Phys.Chem.9 (2007) 4814.
  34. a) Redel. E, Thomann. R, Janiak. C. Inorg.Chem.47(2008)14; b) Redel. E, Thomann. R, Janiak. C. Chem.Commun (2008) 1789.
  35. Gutel.T, Garcia-Anton. J, Pelzer.K, Philippot. K, Santimi.C.C, Chauvin.Y, Chaudret.B, Basset. J.M. J.Mater.Chem.17(2007)3290.
  36. a) Fonseca. G.S, Machado.G, Texeira. S.R, Fecher. G.H, Marais. J, Alves.M.C.M, Dupont.J, J.Colloid interface Sci. 301(2006)193; b) Ren.L, Meng.L, Lu.Q, Fei. Z, Dyson. P.J. J.Colloid interface Sci. 323 (2008) 260.
  37. Dupont. J. Acc.Chem.Res (2011), 44, 1223-1231.
  38. Dupont. J, Sholten. J.D. Chem.Soc.Rev. (2010), 39, 1780-1804.
  39. Wegner,S y Janiak, C. Metal nanoparticles in ionic liquids. Top Curr Chem (Z), 375:65. (2017).
  40. J. A. Widegren, M. A. Bennett and R. G. Finke, J. Am. Chem. Soc, 125, 10301, (2003).
  41. A. Reay and I. Fairlamb. Catalytic C–H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis. Chem. Commun.1-19, (2005).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP