JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 3 (2018): Journal of the Chilean Chemical Society
Original Research Papers

THERMAL STABILITY OF THE Cu-CeO2 INTERFACE ON SILICA AND ALUMINA, AND ITS RELATION WITH ACTIVITY IN THE OXIDATION REACTION OF CO AND THE DECOMPOSITION OF N2O

Pablo Alvarez
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
Gonzalo Aguila
Departamento de Ciencias de la Ingeniería, Facultad de Ingeniería, Universidad Andres Bello
Sichem Guerrero
Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes
Paulo Araya
Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
Published September 12, 2018
Keywords
  • Cu,
  • Ce,
  • silica,
  • alumina,
  • CO oxidation,
  • N2O decomposition
  • ...More
    Less
How to Cite
Alvarez, P., Aguila, G., Guerrero, S., & Araya, P. (2018). THERMAL STABILITY OF THE Cu-CeO2 INTERFACE ON SILICA AND ALUMINA, AND ITS RELATION WITH ACTIVITY IN THE OXIDATION REACTION OF CO AND THE DECOMPOSITION OF N2O. Journal of the Chilean Chemical Society, 63(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/772

Abstract

The effect of the support on the formation of the Cu-CeO2 interface and its thermal stability after calcination at 500, 700 and 900 ºC is studied. The supports used are SiO2, because of its inert character, and Al2O3, because it can interact with the Cu and Ce species on the surface. The catalysts were characterized by BET, XRD, UV-vis DRS, and TPR with H2. The catalytic activity in the CO oxidation reactions with O2 at low temperature and the decomposition of N2O were selected to visualize the effect of temperature on the concentration of Cu-CeO2 interfacial sites. The results show that at a calcination temperature of 500 ºC the formation of the Cu-CeO2 interface is favored over the SiO2 support. However, the stability of the Cu-CeO2 interface on SiO2 is much lower than on Al2O3, causing a substantial decrease of the interfacial sites calcining at 700 ºC, and segregation of the Cu and Ce species on the surface of the silica, with complete loss of the catalytic activity in both reactions when calcining at 900 ºC. In contrast, on alumina the Cu-CeO2 interface is more stable and presents a significant catalytic activity in both reactions, even when calcining at 900 ºC. The characterization results show that the sintering process of Cu species and CeO2 particles is less on the alumina support due to the greater interaction of the Cu and Ce with this support.

References

  1. Liu W, Flytzani-Stephanopoulos M (1995) J. Catal. 153: 304-316.
  2. Kundakovic L, M. Flytzani-Stephanopoulos M (1998) J. Catalysis 179: 203-221.
  3. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Applied Catalysis B 27: 179-191.
  4. Kundakovic L, Flytzani-Stephanopoulos M (1998) Applied Catalysis A 171: 13-29.
  5. Liu Y, Fu Q, Flytzani-Stephanopoulos M (2004) Catalysis Today 93: 241- 246.
  6. Madier Y, Descorme C, Le Govic A, Duprez D (1999) J. Phys. Chem. B 103: 10999-11006.
  7. Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado J, Anderson J, Conesa J, Soria J, Munuera, G (2000) J. Catal. 195: 207-216.
  8. Yao S, Mudiyanselage K, Xu W, Johnston-Peck A, Hanson J, Wu T, Stacchiola D, Rodriguez J, Zhao H, Beyer K, Chapman K, Chupas P, Martinez-Arias A, Si R, Bolin T, Liu W, Senanayake S (2014) ACS Catalysis 4: 1650-1661.
  9. Wang W, Du P, Zou S, He H, Wang R, Jin Z, Shi S, Huang Y, Si R, Song Q, Jia C, Yan C (2015) ACS Catalysis 5: 2088-2099.
  10. Davo-Quiñonero, Navlani-Garcia M, Lozano-Castello D, Bueno-Lopez A, Anderson J (2016) ACS Catalysis 6: 1723-1731.
  11. Benedetto A, Landi G, Lisi L (2017) International Journal of Hydrogen Energy 42: 12262-12275.
  12. Wang X, Rodriguez J, Hanson J, Gamarra D, Martinez-Arias A, Fernandez- Garcia M (2006) J. Phys. Chem. B 110: 428-434.
  13. Adamski A, Zajac W, Zasada F, Sojka Z (2012) Catalysis Today 191: 129-133.
  14. Zhou H, Huang Z, Sun C, Qin F, Xiong D, Shen W, Xu H (2012) Applied Catalysis B 125: 492-498.
  15. Zabilskiy M, Erjavec B, Djinovic P, Pintar A (2014) Chemical Engineering Journal 254: 153-162.
  16. Zabilskiy M, Djinovic P, Erjavec B, Drazic G, Pintar A (2015) Applied Catalysis B 163: 113-122.
  17. Hevia M, Pérez-Ramírez J (2008) Applied Catalysis B 77: 248-254.
  18. Gunawardana P, Lee H, Kim D (2009) International Journal of Hydrogen Energy 34: 1336-1341.
  19. Djinovic P, Levec J, Pintar A (2008) Catalysis Today 138: 222-227.
  20. Pintar A, Batista J, Hocevar S (2007) Journal of Colloid and Interface Science 307: 145-157.
  21. Djinovic P, Batista J, Pintar A (2008) Applied Catalysis A 347: 23-33.
  22. Pradhan S, Reddy A, Devi R, Chilkuri S (2009) Catalysis Today 141: 72- 76.
  23. Sun Y, Hla S, Duffy G, Cousins A, French D, Morphet L, Edwards J, Roberts D (2010) Catalysis Communications 12: 304-309.
  24. Schwarz J, Contescu C, Contescu A, Chem. Rev. (1995) 95: 477-510.
  25. Aguila G, Gracia F, Araya P (2008) Applied Catalysis A 343: 16-24.
  26. Aguila G, Guerrero S, Araya P (2013) Applied Catalysis A 462: 56-63.
  27. Friedman R, Freeman J, Lytle W (1978) Journal of Catalysis 55: 10-28.
  28. Strohmeier B, Leyden D, Field R, Hercules D (1985) Journal of Catalysis 94: 514-530.
  29. Cheektamarla P, Epling W, Lane A (2005) Journal of Power Sources 147: 178-183.
  30. Luo M, Fang P, He M, Xie Y (2005) Journal of Molecular Catalysis A: Chemical 239: 243-248.
  31. Liu Z, Amiridis A, Chen Y (2005) J. Phys. Chem. B 109: 1251-1255.
  32. Zhou R, Jiang X, Mao J, Zheng X (1997) Applied Catalysis A 162: 213- 222.
  33. Ma Z, Yang C, Wei W, Li W, Sun Y (2005) J. Mol. Catal. A: Chem. 231: 75-81.
  34. Shan W, Shen W, Li C, (2003) Chem. Mater. 15: 4761-4767.
  35. Dow W, Wang Y, Huang T (1996) Journal of Catalysis 160: 155-170.
  36. Yao K, Jaenicke S, Lin J, Tan K (1998) Applied Catalysis B 16: 291-301.
  37. Xiaoyuan J, Liping L, Yingxu C, Xiaoming Z (2003) Journal of Molecular Catalysis A 197: 193-205.
  38. Severino F, Brito J, Carias O, Laine J (1986) Journal of Catalysis 102: 172-179.
  39. Yahiro H, Nakaya K, Yamamoto T, Saiki K, Yamaura H (2006) Catalysis Communications 7: 228-231.
  40. Dumas J, Geron C, Kribii A, Barbier J (1989) Applied Catalysis 47: L9- L15.
  41. Sato S, Iijima M, Nakyama T, Sodesawa T, Nozaki F (1997) Journal of Catalysis 169: 447-454.
  42. Gang L, Grondelle J, Anderson B, van Santen R (1999) Journal of Catalysis 186: 100-109.
  43. Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Applied Catalysis B 16: 359-374.
  44. Shimokawabe M, Takesawa N, Kobayashi H (1982) Applied Catalysis 2: 379-387.
  45. Martinez-Arias A, Fernandez-Garcia M, Salamanca L, Valenzuela R, Conesa J, Soria J (2000) J. Phys. Chem. B 104: 4038-4046.
  46. Hu H, Dong L, Shen M, Liu D, Wang J, Ding W, Chen Y (2001) Applied Catalysis B 31: 61-69.
  47. S. Velu S, K. Susuki, K M. Okazaki M, M. Kapoor M, T. Osaki T, F. Ohashi F (2000) Journal of Catalysis 194: 373-384.
  48. Dandekar A, Vannice M (1999) Applied Catalysis B 22: 179-200.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP