JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 3 (2018): Journal of the Chilean Chemical Society
Original Research Papers

RAPID ROOM TEMPERATURE LIQUID PHASE SYNTHESIS OF DIETHYL 2-((4-NITROANILINO) METHYLENE)MALONATE

Hernán Valle
Advanced Ceramics and Nanotechnology Laboratory, Faculty of Engineering, University of Concepción
Ramalinga Viswanathan Mangalaraja
Advanced Ceramics and Nanotechnology Laboratory, Faculty of Engineering, University of Concepción
Bernabé L. Rivas
Polymer Department, Faculty of Chemistry, University of Concepción
José Becerra
Laboratorio de Química de Productos Naturales, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción
Selvaraj Naveenraj
Advanced Ceramics and Nanotechnology Laboratory, Faculty of Engineering, University of Concepción
Published September 12, 2018
Keywords
  • Anilinomethylenemalonate,
  • Room temperature synthesis,
  • Quinoline,
  • Methanolysis
How to Cite
Valle, H., Viswanathan Mangalaraja, R., Rivas, B. L., Becerra, J., & Naveenraj, S. (2018). RAPID ROOM TEMPERATURE LIQUID PHASE SYNTHESIS OF DIETHYL 2-((4-NITROANILINO) METHYLENE)MALONATE. Journal of the Chilean Chemical Society, 63(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/771

Abstract

Diethyl 2-((4-nitroanilino)methylene)malonate [4-NANM-E] is an important molecule owing to its role of precursor in the multistage synthesis of several quinoline derivatives possessing biological activities such as antiviral, immunosuppressive, anticancer and photoprotector. This molecule is usually synthesized by a nucleophilic vinyl substitution (SNV) between 4-nitroaniline and diethylethoxymethylene malonate (EMA). Although several procedures are available to synthesize 4-NANM-E in liquid phase, more convenient method is necessary to synthesize in less reaction time and at room temperature. In this study, it is demonstrated that equimolar amounts of EMA and 4-nitroaniline dissolved in alcoholic KOH react within a few seconds at room temperature to produce 4-NANM-E which is purified by simple filtration after acidification with aqueous HCl and washing with alcohol. The reaction has the yield varying at the range 45-53% when it occurs in ethanol, 2-propanol, 2-butanol or 2-pentanol. Therefore, this synthesis method is an excellent alternative to produce 4-NANM-E on an industrial scale.

References

  1. M. Artico, A. Mai, G. Sbardella, S. Massa, C. Musiu, S. Lostia, F. Demontis, P. La Colla, Bioorganic Med. Chem. Lett. 9, 1651, (1999).
  2. M.V. Shul’gina, N.I. Fadeeva, T.N. Bol’shakova, I.B. Levshin, R.G. Glushkov, Pharm. Chem. J. 33, 343, (1999).
  3. S. Sarkar, P. Ghosh, A. Misra, S. Das, Synth. Commun. 45, 2386, (2015).
  4. T. Stärhfeldt, Patent US006172232B1, 2001.
  5. J.A. Tucker, V.A. Vaillancourt, J.W. Strohbach, K.R. Romines, M.E. Schnute, M.M. Cudahy, S. Thaisrivongs, S.R. Turner, Patent US006093732A, 2000.
  6. J.-F. He, L.-H. Yun, R.-F. Yang, Z.-Y. Xiao, J.-P. Cheng, W.-X. Zhou, Y.-X. Zhang, Bioorg. Med. Chem. Lett. 15, 2980, (2005).
  7. B. Lucero, C. Gomes, I. Frugulhetti, L. Faro, L. Alvarenga, M. De Souza, T. De Souza, V. Ferreira, Bioorganic Med. Chem. Lett.16, 1010, (2006).
  8. M.P. Moyer, F.H. Weber, J.L. Gross, J.W. Isaac, R. Fort, Bioorg. Med. Chem. Lett. 2, 1589, (1992).
  9. F. Boechat, C. Sacramento, A. Cunha, F. Sagrillo, C. Nogueira, N. Fintelman-Rodrigues, O. Santos-Filho, C. Riscado, L. Forezi, L. Faro, L. Brozeguini, I. Marques, V. Ferreira, T. Souza, M. De Souza, Bioorganic Med. Chem. 23, 7777, (2015).
  10. A.P. Kaplan, V. Gupta, J.W.F. Wasley, Patent US 20080306049A1, 2008.
  11. D. Yang, L. Arifhodzic, C.R. Ganellin, D.H. Jenkinson, Eur. J. Med. Chem. 63, 907, (2013).
  12. C. Oh, I. Yi, K.P. Park, J. Heterocycl. Chem. 31, 841, (1994).
  13. H. Agui, T. Mitani, M. Nakashita, T. Nakagome, J. Heterocyclic Chem. 8, 357, (1971).
  14. B. Riegel, G.R. Lappin, B.H. Adelson, R.I. Jackson, C.J. Albisetti, R.M. Dodson, R.H. Baker, J. Am. Chem. Soc. 68, 1264, (1946).
  15. G.F. Duffin,; J.D. Kendall, J. Chem. Soc. 893, (1948).
  16. D. Tarabová, V. Milata, J. Hanusek, Acta Chim. Slovaca. 6, 73, (2013).
  17. K.-W. Kim, H.-J. Lee, J.-I. Jo, T.-W. Kwon, Bull. Korean Chem. Soc. 31, 1155, (2010).
  18. C. Leonelli and P. Veronesi, In Production of Biofuels and Chemicals with Microwave, Z. Fang, R.L. Smith Jr., X. Qi, Eds. Springer Netherlands, Dordrecht, 2015; pp. 17–40.
  19. A. Gómez-Sanchez, E. Sempere, J. Bellanato, J. Chem. Soc. Perkin Trans. 2. 3, 561, (1981).
  20. D. M. Mulvey, R.J. Tull, L.M. Weinstock, Patent US3515745A, 1970.
  21. N. Katagiri, H. Akatsuka, T. Haneda, C. Kaneko, A. Sera, J. Org. Chem. 53, 5464, (1988).
  22. S. Antus, F. Boross, M. Nógrádi, Justus Liebigs Ann. Chem. 1, 107, (1978).
  23. I.A. Wolff, D.W. Olds, G.E. Hilbert, Synthesis (Stuttg). 9, 732, (1984).
  24. D. Kusdiana, S. Saka, Fuel. 80, 693, (2001).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP