JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 3 (2016): Journal of the Chilean Chemical Society
Original Research Papers

INTELLIGENT MULTIVARIATE MODEL FOR THE OPTICAL DETECTION OF TOTAL ORGANIC CARBON

Taher Ahmadzadeh Kokya
Department of Environmental Engineering, Faculty of Environment, University of Tehran
Naser Mehrdadi
Department of Environmental Engineering, Faculty of Environment, University of Tehran
Mojtaba Ardestani
Department of Environmental Engineering, Faculty of Environment, University of Tehran
Akbar Baghvand
Department of Environmental Engineering, Faculty of Environment, University of Tehran
Arash Kazemi
Electronics Laboratory, Array Computers Co.
Aram A. M. Kalhori
Global Change Research Group, San Diego State University
Published May 23, 2017
Keywords
  • Total Organic Carbon,
  • Modeling,
  • Artificial Neural Network,
  • UV254,
  • Color,
  • Turbidity
  • ...More
    Less
How to Cite
Kokya, T. A., Mehrdadi, N., Ardestani, M., Baghvand, A., Kazemi, A., & Kalhori, A. A. M. (2017). INTELLIGENT MULTIVARIATE MODEL FOR THE OPTICAL DETECTION OF TOTAL ORGANIC CARBON. Journal of the Chilean Chemical Society, 61(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/73

Abstract

UV inactivity and fluorescence irradiance of various organic substances are the major drawbacks for a wide applicability of UV based TOC assessment models, especially in drinking water utilities and environmental fields. The adoption of an intelligent model is the key factor to access a reliable and effective detection. The accurate training of the artificial neural network model and backward elimination of less significant parameters, conferred more predictive properties to TOC detection. This led to an efficient optimal TOC detection model based on turbidity, UV254 absorbance and true color. The validation of model performance was investigated through application of untrained scenarios. The outcome of the validation analysis showed a correlation coefficient of 0.87 and root mean square error of 0.48 while the training performance of the model showed 0.95 and 0.33 respectively. The results indicated that the trained ANN model was efficiently capable for TOC detection in water resources based on the main drivers. 

References

  1. K.P. Singh, A. Malik, D. Mohan and S. Sinha, J. Water Res. 38(18), 3980–3992 (2004).
  2. Y. Hou, W. Chu and M. Ma, J. Environ. Sci. 24(7), 1204–1209 (2012).
  3. R. Beckett and J. Ranville, in Interface Science in Drinking Water Treatment: Theory and Applications, Edited by G. Newcombe and D. Dixon (Elsevier Ltd, London, 2006).
  4. G. Visco, L. Campanella and V. Nobili, Microchem. J. 79, 185–191 (2005).
  5. Matilainen, E.T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar and M. Sillanpää, Chemosphere 83, 1431–1442 (2011).
  6. M.W. Gardner and S.R. Dorling, J. Atmos. Environ. 32, 2627–2636 (1998).
  7. M.R. Moghadam, A.M.H. Shabani and S. Dadfarnia, J. Hazard. Mater. 197, 176–182 (2011).
  8. I.O. Bucak and B. Karlik, Ekoloji 20(78), 75–81 (2011).
  9. P. Kulkarni and S. Chellam, J. Sci. Tot. Environ. 408(19), 4202–4210 (2010).
  10. E. Dogan, A. Ates, E. C. Yilmaz and B. Eren, Environ. Prog. 27(4), 439–446 (2008).
  11. E. Dogan, B. Sengorur and R. Koklu, J. Environ. Manag. 90(2), 1229–1235 (2009).
  12. P.S. Kunwar, A. Basant, A. Malik and G. Jain, Ecol. Model. 220(6), 888–895 (2009).
  13. P.S. Kunwar and S. Gupta, Chemomet. Intell. Lab. Sys. 114, 122–131 (2012).
  14. Q. Cong, W. Yu and T. Chai, in Advances in Computational Intelligence vol.61, edited by W. Yu, E.N. Sanchez (Springer– Verlag, Berlin, 2009).
  15. Najah, A. El-Shafie, O.A. Karim, O. Jaafar and A.H. El-Shafie, Int. J. Phys. Sci. 22(6), 5298–5308 (2011).
  16. A.R. Khataee, M. Zarei and M. Pourhassan, Clean 38(1), 96–103 (2010).
  17. E.R. Rene and M.B. Saidutta, Int. J. Environ. Res. 2(2), 183–188 (2008).
  18. K. Yetilmezsoy and S. Demirel, J. Hazard. Mater. 153, 1288–1300 (2008).
  19. K. Yetilmezsoy, B. Ozkaya and M. Cakmakci, Neural Net. World 11(3), 193–218 (2011).
  20. G. Dreyfus, J.M. Martinez, M. Samuelides, M. B. Gordon, F. Badran and S. Thiria, L. Hérault, Reseaux de Neurones - Méthodologie et applications, (Eyrolles, Paris, 2002).
  21. R.S. Govindaraju, J. Hydrol. Eng. 5(2), 124–137 (2000).
  22. J.M. Ortiz-Rodríguez, M.R. Martínez-Blanco, J.M. Cervantes Viramontes and H.R. Vega-Carrillo, in Artificial Neural Network- Architectures and Applications, edited by K. Suzuki (InTech, Rijeka, 2013).
  23. R.C. Schweitzer and J.B. Morris, United States Army Research Laboratory Report No. ARL–TR–2155, 2000.
  24. S. Palani, S. Liong, P. Tkalich and J. Mar. Pollut. Bull. 56(9), 1586–1597 (2008).
  25. J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed. (Springer–Verlag, New York, 2006).
  26. N.M. Nawi, M.R. Ransing and R.S. Ransing, Presented at the Sixth International Conference on Intelligent Systems Design and Applications IEEE, Jinan University, China, 2006 (unpublished).
  27. L. Sonneborn, Chronology of American Indian History (Infobase Publishing, New York, 2007).
  28. C. Volk, L. Wood, B. Johnson, J. Robinson, H. W. Zhuc and L. Kapland, J. Environ. Monit. 4, 43–47 (2002).
  29. C. Volk, L.A. Kaplan, J. Robinson, B. Johnson, L. Wood, H.W. Zhu and M. LeChevallier, Environ. Sci. Technol. 39(11), 4258–4264 (2005).
  30. I. Delpla, A.V. Jung, E. Baures, M. Clement, O. Thomas, Environ. Inter. 35, 1225–1233 (2009).
  31. J.K. Edzwald, G.S. Kaminski, J. NEWWA, 123(1), 15–31 (2009).
  32. T.Y. Lin and C.H. Tseng, J. Eng. App. Art. Intell. 13, 3–14 (2000).
  33. J.A. Frenie, A. Jiju, Work Study 50(4), 141–149 (2001).
  34. T.T. Soong, Fundamentals of probability and statistics for engineers, (John Wiley & Sons Inc., New York, 2004).
  35. I. Bisutti, I. Hilke, M. Raessler, Trends Anal. Chem. 23(1), 10–11 (2004).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP