JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 2 (2018): Journal of the Chilean Chemical Society
Original Research Papers

Cr(III)REMOVAL FROM AQUEOUS SOLUTION BYION EXCHANGE RESINS CONTAINING CARBOXYLIC ACID AND SULPHONIC ACID GROUPS

Bernabé L. Rivas
Department of Polymers, Faculty of Chemistry, University of Concepción
Daniela V. Morales
Department of Polymers, Faculty of Chemistry, University of Concepción
Nalan Kabay
Department of Chemical Engineering, Faculty of Engineering, Ege University
Marek Bryjak
Department of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Technology
Published June 25, 2018
Keywords
  • ion exchange resins,
  • chromium,
  • removal,
  • batch and column methods
How to Cite
Rivas, B. L., Morales, D. V., Kabay, N., & Bryjak, M. (2018). Cr(III)REMOVAL FROM AQUEOUS SOLUTION BYION EXCHANGE RESINS CONTAINING CARBOXYLIC ACID AND SULPHONIC ACID GROUPS. Journal of the Chilean Chemical Society, 63(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/687

Abstract

Ion exchange resins based on the water-insoluble polymers poly(acrylamide-co-styrene sodium sulfonate) (P(AAm-co-ESS)), poly(2-acrylamide-2-methyl- 1-propanesulfonic acid-co-acrylicacid) (P(APSA-co-AAc)),poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) (P(AAGA-co- APSA)), and poly(2-acrylamidoglycolic acid-co-4-styrene sodium sulfonate) (P(AAGA-co-ESS)) were synthesized by radical polymerization. These polymers were employed to remove Cr(III) from an aqueous solution. The optimum sorption parameters of amount of resin and sorption time were obtained through batch-mode sorption tests. Following batch elution tests to identify the best eluting agent. Finally,the column-mode sorption/elution behaviors of ion exchange resins were studied.

The ion exchange resins exhibited excellent removal of Cr(III). The P(AAGA-co-APSA) resin exhibited 89.4% removal, while P(AAGA-co-ESS) displayed 88.3%, P(AAm-co-ESS) 86.8%, and P(APSA-co-AAc) 89.3%. The column-mode was studied by theP(AAGA-co-APSA) resingave a breakthrough capacity of 1.5 mg Cr(III)/mL resin in the first cycle. The elution efficiency was almost 100%. The breakthrough capacity was 1.2 mg Cr(III)/mL resin in the second cycle. The elution efficiency was 90.2% in the second cycle.

References

  1. Andrei A. Zagorodni (2007) Ion Exchange Materials: Properties and applications, first edition.
  2. C. E. Harland (1994) Ion Exchange: Theory and practice, second edition.
  3. Çavus S. and Gürdag G.(2008)Competitive heavy metal removal by poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-itaconic acid). Polym. Adv. Technol. 19:1209-1217.
  4. Urbano B. F. and Rivas B. L. (2013) Synthesis, characterization, and sorption properties of water-insoluble poly(2-acrylamido-2-methyl-1- propane sulfonic acid-co-sulfonic acid)- montmorillonite composite. Polym. Bull. 70:1143-1162.
  5. Rivas B. L., Muñoz, C., Leiton, L. and Pooley S. A. (2011) Metal ion removal properties of crosslinked poly(acrylamide-co-2-acrylamide-2- methyl-1-propane sulfonic acied). J. Appl.Polym. Sci.120:586-591.
  6. Rivas B. L., Martínez E., Pereira E. and Geckeler , K. E.(2001)Synthesis, characterization and polychelatogenic properties of poly[(2-acrylamido- 2-methyl-1-propane sulfonic acid)-co-(methacrylic acid)].Polym. Int.50:456–462.
  7. Bajaj P., Paliwal D. K. and Gupta, A. K. (1993) Acrylonitrile–acrylic acids copolymers. I. Synthesis and characterization.J. Appl. Polym. Sci. 49:823– 833.
  8. Rivas B. L., Peric I. M.; Muñoz C. andAlvear, R. (2012)Poly(N-hydroxymethyl acrylamide-co-acrylic acid) and poly(N-hydroxymethyl acrylamide-co-acrylamidoglycolic acid): synthesis, characterization, and metal ion removal properties. Polym. Bull. 68:391-403.
  9. Urbano B. F. and Rivas B. L. (2012)Poly(sodium 4-styrene sulfonate) and poly(2-acrylamido glycolic acid) polymer–clay ion exchange resins with enhanced mechanical properties and metal ion retention.Polym. Int.61:23- 29.
  10. Travas-Sejdic, J. and Easteal, A., (2000) Study of free-radical copolymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulphonic acid. J. Appl. Polym. Sci.75:619–628.
  11. Rivas B. L., Muñoz C. (2007) Removal of environmentally impacting metal ions using functional resin poly(4-styrene sulfonate-co-4-vinylpyridine): Synthesis and metal ion retention properties. J. Appl.Polym. Sci.104:1769- 1774.
  12. Santander I. P., Rivas B. L., Urbano B., Leiton, L., Yılmaz İpek, İ., Yüksel M., Kabay N. and Bryjak, M. (2014) Removal of Cr(VI) by a chelating resin containing N-methyl-D-glucamine. Polym. Bull.71:1813-1825.
  13. Hasnat A. and Juvekar V. A. (1996) Ion exchange Kinetics: Heterogeneous Resin-Phase Model.AIChE J. 42:161–175.
  14. World Health Organization(2011) Guidelines for drinking-water quality, four edition, Switzerland.
  15. Chromium (III) and its inorganic compounds (2009) The Mak Collection for occupational Health and Safety, value Documentations.
  16. Li H., Li J., Chi Z. and Ke W. (2012)Kinetic and equilibrium studies of chromium (III) removal from aqueous solution by IRN-77 cation-exchange resin. Proc. Env. Sci. 16:646-655.
  17. Licinio M. Gando-Ferreira (2012) Ion Exchange Technology II: Applications, 323-336.
  18. Petruzzelli D., Liberti L., Passino R. and Tiravanti G. (1990) Recent Developments in Ion exchange, Part 5, 265-275.
  19. Kocaoba S., Aksin G., Monatsh.A (2008) kinetic investigation of removal of chromium from aqueous solutions with a strong cation exchange resin. Chem.139:873-879.
  20. Alguacil J.F., García-Diaz, I., Lopez F. (2012) The removal of chromium (III) from aqueous solution by ion exchange on Amberlite 200 resin:Batch and continuous ion exchange modeling. Desalin.Water Treat.45:55-60.
  21. Morales D. V., Rivas B. L. (2014) Poly(acrylamide-co-styrene sodium sulfonate) and Poly(2-acrylamide-2-methyl-1-propane sulfonic acid-co-acrylic acid) resins with removal properties for Hg(II), Pb(II), Cd(II) and Zn(II).J. Chil. Chem. Soc. 49 (Nº2) 2420-2526.
  22. Morales D. V., Rivas B. L. (2015) Poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) and Poly(2- acrylamidoglycolic acid-co-4-styrene sodium sulfonate): synthesis, characterization and properties for use in the removal of Cd(II), Hg(II), Zn(II), and Pb(II). Polym. Bull. 72 (2) 339-352.
  23. Demircioğlu M., Kocacık N., Yiğit E. and Kabay N. (1998) Innovations in mineral and coal processings 781-785.
  24. Kabay N., Sarp S., Yüksel M., Arar Ö., Bryjak M. (2007) Removal of boron from seawater by selective ion exchange resins. React. Funct. Polym.67:1643-1650.
  25. Justi K. C., Fávere V. T., Laranjeira M.C. M., Neves A., Peralta R. A. (2005) Kinetics and equilibrium of Cu(II), Cd(II) and Ni(II) by chitosan functionalized with 2[-bis(pyridylmethyl aminomethyl]-4-methyl-6- formylphenol. J. Colloid Interf. Sci.291:369-374.
  26. Chen Q., Zhou K., Chen Y., Wang A., Liu F. (2017) Removal of ammonia from aqueous solution by ligand exchange onto a Cu(II)-loaded chelating resin: Kinetics, equilibrium and thermodynamics. RSC Adv.7:12812- 12823.
  27. Sheng G., Hu J., WhangX. (2008) Sorption properties of Th(IV) on the raw diatomite-Effect of contact time, pH, ionic strength and temperature. Appl. Radiation Isotopes 66:1313-1320.
  28. Saruchi Kumar V. (2016) Adsorption Kinetics and isotherms for the removal of rhodamine B dye and Pb2+ ions from aqueous solutions by hybrid ion-exchanger.Arabian J. Chem. 1-14.
  29. Siu P.C.C., Koong L. F., Saleem J., BarfordJ., Mckay G. (2016) Equilibrium and Kinetics of cooper ions removal from wastewater by ion exchange. Chin. J. Chem. Eng.24:94-100.
  30. Guo H., Rhen Y., Sun X., Xu Y., Li X.,Zhang T., Kang J., Liu D. (2013) Removal of Pb2+ fromaqueous solution by a high-efficiency resin. Appl. Surf. Sci.238:660-667.
  31. Ozkula G., Urbano B. F., Rivas B. L., Kabay N., Bryjac M. (2016) Arsenic sorption using mixtures of ion Exchange resins containing N-methyl-D-glucamine and quaternary ammonium groups. J. Chil. Chem. Soc. 61 (Nº1) 2752-2756.
  32. Rivas B.L., Pooley S.A., Pereira E., Cid R., Luna M.,Jara M.A. Geckeler KE. (2005). Water-soluble amine and imine polymers with ability to bind metal ions in conjunction with membrane filtration. J. Appl.Polym. Sci.96: 222-231.
  33. Rivas B.L., Moreno-Villoslada I. (2000) Prediction of the retention values associated to the ultrafiltration of mixtures ions and high molecular weight water soluble polymers as a function of the initial strength J. Membrane Sci. 178:165-170.
  34. Geckeler K.E, Zhou R., Rivas B.L. (1992) Metal Complexation of Poly1- (2 hydroxyethyl)aziridine-co-2-methyl-2-oxazoline in aqueous solution. Angew. Makromol. Chem.197: 107-115.
  35. Rivas B.L., Maturana H.A., Pereira E. (1994) Metal Ion Binding Properties of Vinyl Synthetic Resins. Angew. Makromol. Chem. 220: 61-74.
  36. Rivas B.L., Maturana, H.A, Catalán R.E., Perich I.M. (1989) Branched and Linear Poly(ethyleneimine) Supports for Resins with Retention Properties for Copper and Uranium. Part 7. J. Appl. Polym. Sci. 38: 801-807.
  37. Rivas B.L., Pereira E. (2000) Obtention of Poly(allylamine)-Metal Com¬plexes through Liquid-Phase Polymer Based Retention (LPR) Technique. Bol. Soc. Chil. Quím. 45: 165-171.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP