JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 2 (2018): Journal of the Chilean Chemical Society
Original Research Papers

SPECTROPHOTOMETRIC DETERMINATION OF REDUCING SUGAR IN WINES EMPLOYING IN-LINE DIALYSIS AND A MULTICOMMUTED FLOW ANALYSIS APPROACH

Paulo A. B. Da Silva
Instituto Federal de Alagoas, Campus Coruripe Departamento de Química Fundamental, Universidade Federal de Pernambuco
Gustavo C. S. De Souza
Departamento de Química Fundamental, Universidade Federal de Pernambuco
Ana Paula S. Paim
Departamento de Química Fundamental, Universidade Federal de Pernambuco
André F. Lavorante
Departamento de Química, Universidade Federal Rural de Pernambuco
Published June 25, 2018
Keywords
  • Dialysis,
  • Flow injection analysis,
  • Multicommutation,
  • Reducing sugar,
  • Wine
How to Cite
Da Silva, P. A. B., De Souza, G. C. S., Paim, A. P. S., & Lavorante, A. F. (2018). SPECTROPHOTOMETRIC DETERMINATION OF REDUCING SUGAR IN WINES EMPLOYING IN-LINE DIALYSIS AND A MULTICOMMUTED FLOW ANALYSIS APPROACH. Journal of the Chilean Chemical Society, 63(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/684

Abstract

A multicommuted flow procedure for the spectrophotometric determination of reducing sugars in wine has been developed. A dialysis unit was incorporated in the system to minimize matrix interferences and eliminate the colored compounds of the wine. The oxidation-reduction reaction in an alkaline medium between reducing sugars and the Cu2+-Neocuproine complex was employed. The compound formed was monitored at 460 nm. In the proposed procedure, there was a linear response between 0.25 and 4.0 g L-1 reducing sugars (y = (0.36 ± 0.02) + (0.31 ± 0.01) * x, R = 0.9975, n = 6), a coefficient of variance of 2.6% for a reducing sugar solution of 2.0 g L-1 (n = 7), a limit of detection estimated at 0.03 g L-1, reagent consumption per determination of 0.330, 0.128 and 0.160 mg for neocuproine, CuSO4 and NaOH, respectively. A sampling throughput of 45 determinations per hour was achieved. The proposed system was applied to wine samples and comparing the results with an AOAC official method no significant difference at a 95% confidence level.

References

  1. A.L. Galant, R.C. Kaufman, J.D. Wilson, Food Chem., 188, 149, (2015).
  2. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry. Oxfor University Press, N.Y., 2001, pp.15-42.
  3. R.B. Boulton, V.L. Singleton, L.F. Bisson, R.E. Kunkee, Principles and practices of winemaking. Chapman & Hall, N. Y., 1996, 585 p.
  4. OIV. Compendium of International Methods of Analysis of Wines and Musts. International Organisation of Vine and Wine, Paris, 2014, 504 p.
  5. K.S. Başkan, E. Tütem, E. Akyüz, S. Özen, R. Apak, Talanta, 147, 162, (2016).
  6. P. González, M. Knochen, M.K. Sasaki, E.A.G. Zagatto, Talanta, 143, 419, (2015).
  7. C.I.C. Silvestre, J.L.M. Santos, J.L.F.C. Lima, E.A.G. Zagatto, Anal. Chim. Acta, 652(1-2), 54, (2009).
  8. A.D. Batista, R.S. Amais, F.R.P. Rocha, Microchem. J., 124, 55, (2016).
  9. P.A.B. da Silva, G.C.S. de Souza, D.M.D.S. Leotério, M. F. Belian, W. E. Silva, A.P.S. Paim, A.F. Lavorante, J. Food Compos. Anal., 40, 177, (2015).
  10. L.G. Decnop-Weever, J.C. Kraak, Anal. Chim. Acta., 337(2), 125, (1997).
  11. M. Naghizadeh, M.A. Taher, M. Behzadi, F.M. Hassani, Chem. Eng. J., 281, 444, (2015).
  12. A.C. Pereira, F.R.P. Rocha, Anal. Methods, 5(8), 2104, (2013).
  13. A.C. Pereira, B.F. Reis, F.R.P. Rocha, Talanta, 131, 21, (2015).
  14. A.N. Ramdzan, P.J. Mornane, M.J. McCullough, W. Mazurek, S.D. Kolev, Anal. Chim. Acta, 786, 70, (2013).
  15. M.C. Yebra, M. Gallego, M. Valcárcel, Anal. Chim. Acta, 276(2), 385, (1993).
  16. M.D. Luque de Castro, J.L. Luque-Garcia, Anal. Letters, 33(6), 963, (2000).
  17. A.N. Araújo, J.L.F.C. Lima, A.O.S.S. Rangel, M.A. Segundo, Talanta, 52(1), 59, (2000).
  18. M.A. Feres, P.R. Fortes, E.A.G. Zagatto, J.L.M. Santos, J.L.F.C. Lima, Anal. Chim. Acta, 618(1), 1, (2008).
  19. G.C.S. de Souza, P.A. Bezerra da Silva, D.M.S. Leotério, A.P.S. Paim, A.F. Lavorante, Food Control, 46, 127, (2014).
  20. J.C.Miranda, M.Y. Kamogawa, B.F. Reis, Sens. Actuators B Chem., 207, 811, (2015).
  21. D.S.M. Ribeiro, C. Frigerio, J.L.M. Santos, J.A.V. Prior, Anal. Chim. Acta, 735, 69, (2012).
  22. D.L.Rocha, F.R.P. Rocha, Inter. Environ. Anal. Chem., 93(13), 1389, (2013).
  23. W.R. Melchert, B.F. Reis, F.R.P. Rocha, Anal. Chim. Acta, 714, 8, (2012).
  24. A.C. Pereira, F.R.P. Rocha, Anal. Chim. Acta, 829, 28, (2014).
  25. A.L.D.Comitre, B.F. Reis, Anal. Chim. Acta, 479(2), 185, (2003).
  26. A.L.D.Comitre, B.F. Reis, Talanta, 65(4), 846, (2005).
  27. L. Li, L. Fang, Y. He, Instr. Sci. Technol., 31(3), 269, (2003).
  28. M.A. Sanchez, F.R.P. Rocha, Anal. Chim. Acta, 694(1-2), 95, (2011).
  29. S.M. Oliveira, T.I.M.S. Lopes, I.V. Tóth, A.O.S.S. Rangel, Talanta, 81(4- 5), 1735, (2010).
  30. S.M. Oliveira, T.I.M.S. Lopes, I.V. Tóth, A.O.S.S. Rangel, J. Agric. Food Chem., 57(9), 3415, (2009).
  31. C.A. Tumang, M.C. Tomazzini, B.F. Reis, Anal. Sci., 19(12), 1683, (2003).
  32. D.M.S. Leotério, P.A.B. Silva, G.C.S. Souza, A.D.A. Alves, M.F. Belian, A. Galembeck, A.F. Lavorante, Food Control, 57, 225, (2015).
  33. G.W. Latimer Jr, The Official Methods of Analysis of AOAC International, 19th Edition. Rockville, USA, 2012.
  34. F.P. Miller, F. Agnes, J.M. Vandome, J. McBrewster, Fick’s Law of Diffusion. VDM Publishing, Saarbrücken, 2009, 82p.
  35. J. Pawliszyn, Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists. Academic Press, N.Y., 2012, 3200p.
  36. G. Lee, M.V. Rossi, N. Coichev, H.D. Moya, Food Chem., 126(2), 679, (2011).
  37. R. Ravichandran, M. Rajendran, D. Devapiriam, Food Chem. 146, 472, (2014).
  38. A. Maquieira, M.D. Luque de Castro, M. Valcarcel, Analyst, 112(11), 1569, (1987).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP