JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 2 (2018): Journal of the Chilean Chemical Society
Original Research Papers

EVOLUTION OF THE PHASES OF QUASICRYSTALLINE ALLOYS ICOSAHEDRAL/ DECAGONAL Al62.2Cu25.3Fe12.5/Al65Ni15Co20 AND OXIDATIVE BEHAVIOR

Lourdes Cristina Lucena Agostinho Jamshi
MG JAM E JAM CLEAN & BIOFUEL CATALYST- Co., LTD.
Reza Jamshidi Rodbari
MG JAM E JAM CLEAN & BIOFUEL CATALYST- Co., LTD.
Published June 25, 2018
Keywords
  • Quasicrystalline alloys,
  • phases,
  • icosahedral,
  • decagonal,
  • oxidation
How to Cite
Agostinho Jamshi, L. C. L., & Jamshidi Rodbari, R. (2018). EVOLUTION OF THE PHASES OF QUASICRYSTALLINE ALLOYS ICOSAHEDRAL/ DECAGONAL Al62.2Cu25.3Fe12.5/Al65Ni15Co20 AND OXIDATIVE BEHAVIOR. Journal of the Chilean Chemical Society, 63(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/671

Abstract

In this paper, we present an approach and investigation on the evolution of the icosahedral and decagonal phases of quasicrystalline alloys Al62.2Cu25.3Fe12.5 E Al65Ni15Co20, the oxidation behavior in them. The quantification of the quasicrystalline and crystalline phases present in the quasicrystals provides important information in the mass transport by diffusion, as well as the phase transformations that occurred. For this purpose, X-ray diffraction (XRD) and Rietveld Method Quantification, Scanning Electron Microscopy (SEM) / Dispersive Energy Spectroscopy (EDS), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis). The results showed structural aspects of the two compositions of quasicrystals, these were elaborated and obtained in an arc induction furnace. The oxidation of the alloy Al62.2Cu25.3Fe12.5 showed intermetallic phases with associations of the elements of the alloy and above 735 °C was observed that the crystalline phase is stable in the icosahedral phase. The quasicrystals Al65Ni15Co20, with the interaction of oxygen, happens in the surface of symmetry 10 times plane perpendicular vector. The formation of a thin film of the aluminum oxide with a well ordered hexagonal shape structure, with a domain opposite the decagonal phase with lateral size at about 35 Å.

References

  1. SHECHTMAN, D.; BLECH, I.; GRATIAS, D. e CAHN, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., v. 53, p. 1951-1953, 1984.
  2. BONASSO, N.; PIGEAT, P. Preparation of Al-Cu-Fe ultra-thin quasicrystalline films without protective coatings by MBE: influence of processing. Materials Science and Engineering A 349, pp.224-229, 2003.
  3. T. ISHIMASA., H. U. NISSEN., and Y. FUKANO., Phys. Rev. Lett., 55 (5), 511-513 (1985).
  4. TSAI, A. P.Icosahedral clusters, icosahedral order and stability of quasicrystals a view of metallurgy. Sci. Technol. Adv. Mater.9, pp.1-21, 2008.
  5. G. ROSAS.; R.PEREZ . On the transformations of the ψ-AlCuFe icosahedral phase. Materials Letters 47 2001. 225–230.
  6. SRIVASTAVA,V.C.; HUTTUNEN AARIVIRTA,E.; CUI,C.; UHLENWINKEL,V.; SCHULZ, A.; MUKHOPADHYAY, N. K. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase. Journal of Alloys and Compounds 597, pp.258–268, 2014.
  7. E. ROTENBERG., W. THEIS., K. HORN., P. GILLE. Electronic valence bands in decagonal Al-Ni-Co. Phys. Rev B, 68:104205, 2003.
  8. S. BURKARDT.;M. ERBUDAK .;R.MÄDER. High-temperature surface oxidation of the decagonal AlCoNi quasicrystal. Surface Science 603 (2009) 867–872.
  9. J. HAFNER.,M. KRAJCI. Formation of magnetic moments in crystalline, quasicrystalline, and liquid Al-Mn alloys. Phys. Rev B, 57:2849, 1998.
  10. WEHNER, B. I., MEINHARDT, J., KÖSTER, V., ALVES, H.ELIAZ, N.ELIEZER, D.,(1997),Oxidation hydrogenation of quasicrystals,Materials Science and Engineering, A226-228, p.1008- 1011.
  11. X I N B U . L I U . ; Y O S H I A K I . OSAWA.;SUSUMUTAKAMORI.;GENCANG.YANG. Thermal stability of decagonal quasicrystal prepared from undercooled Al72Ni12Co16 alloy melt. Materials Letters 61 (2007) 5164–5168.
  12. JAMSHIDI,L.C.L.A., RODBARI,R.J. The Applicability of Quasicrystals Al-Cu-Fe For Catalytic Reactions, 1. Ed. Lambert Academic Publishing, 2017.
  13. DUBOIS. J.M.; JEEVAN. H. S.; RANGANATHAN. S.; (1998), Quasicrystals, Ed. S. Takeuchi & T. Fujiwara, (Singapore: World Science).
  14. B. I. WEHNER.; U. KOSTER. Microstructural Evolution of Alumina Layers on an Al–Cu–Fe Quasicrystal during High-Temperature Oxidation. Oxidation of Metals, Vol. 54, Nos. 5/6, 2000.
  15. M.YURECHKO;B.GRUSHKO.;T.YA.VELIKANOVA.;K.URBAN.A comparative study of the Al–Co–Pd and Al–Co–Ni alloy systems. Journal of Alloys and Compounds 367 (2004) 20–24.
  16. SUROWIEC. M.; BOGDANOWICZ.W.;SOZANSKA. M. Evolution of the Phase β Flux Dissolution during Quasicrystal Formation.Acta Physica Polonica A 126, pp.594-595, 2014.
  17. J.Y.PARKA.; D.F.OGLETREE.; M. SALMERON.; C.J. JENKS.;P.A.THIEL. Friction and adhesion properties of clean and oxidized Al–Ni–Co decagonal quasicrystals: a UHV atomic force microscopy/scanning tunneling microscopy study. Tribology Letters, Vol. 17, No. 3, October ( 2004).
  18. J. GUI., J. WANG., R. WANG., D. WANG., J. LIU., F. Chen. “On some discrepancies in the literature about the formation of icosahedral quasicrystal in Al-Cu-Fe alloys”, J. Mater. Res., 16 (2001), 1037.
  19. REBECCA D. DAR.; HAOXUE YAN.; YING CHEN.Grain boundary engineering of Co–Ni–Al,Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scripta Materialia 115 (2016) 113–117.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP