JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 61 No 3 (2016): Journal of the Chilean Chemical Society
Original Research Papers

EFFECT OF CONCENTRATION AND MOLECULAR MASS OF PEO ON THE MICELLIZATION AND THERMODYNAMIC BEHAVIOUR OF CETYLTRIMETHYLAMMONIUM BROMIDE (CTAB) IN AQUEOUS PEOCTAB MIXED SYSTEM

Abdur Rauf
Department of Chemistry, Gomal university, Dera Ismail Khan Department of Chemistry, University of Science and Technology, Bannu
Musa Kaleem baloch
Department of Chemistry, Gomal university, Dera Ismail Khan
Abbas Khan
Department of Chemistry, Abdul Wali Khan University Mardan
Zafarullah Khan
Department of Chemistry, Gomal university, Dera Ismail Khan
Salma Rauf
Department of Biological Sciences, Gomal university, Dera Ismail Khan
Published May 23, 2017
Keywords
  • Thermodynamics,
  • Micellizatin,
  • Surface tension,
  • Hydrodynamic radius,
  • Light scattering,
  • PEO
  • ...More
    Less
How to Cite
Rauf, A., Kaleem baloch, M., Khan, A., Khan, Z., & Rauf, S. (2017). EFFECT OF CONCENTRATION AND MOLECULAR MASS OF PEO ON THE MICELLIZATION AND THERMODYNAMIC BEHAVIOUR OF CETYLTRIMETHYLAMMONIUM BROMIDE (CTAB) IN AQUEOUS PEOCTAB MIXED SYSTEM. Journal of the Chilean Chemical Society, 61(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/64

Abstract

Polymer-surfactant mixed systems have attracted much attention due to their importance from the academic as well as applied point of view. Therefore, to evaluate the thermodynamic properties of polymer-surfactant self-assembled system, the critical micelle concentration (CMC) of CTAB and CTAB/PEO mixture was determined at different CTAB/PEO ratios and various molecular masses of PEO by employing surface tensiometric, conductometric, and light scattering techniques. The CMC of CTAB was increased as the concentration and molecular mass of the polymer increased. Using surface tensiometry, the thermodynamics of adsorption, surface excess concentration and the minimum area occupied by surfactant molecules for different surfactant-polymer mixtures were also evaluated. CMC, area per molecule, free energy of micellization and degree of counter ion binding were also determined. It was found that most of these parameters increased as the concentration of polymer increased, whereas the surface excess concentration was found to decrease by increasing the polymer ration in the mixed system. The hydrodynamic radius (Rh) of the micelle particles calculated from dynamic light scattering technique showed a similar trend. Most of the results from different techniques support each others.

References

  1. D. E. Goddard, In Interactions of Surfactants with Polymers and Proteins. Goddard. D.E.; Ananthapadmanabhan K.P.CRC Press: Boca Raton. FL, (1993).
  2. M. Goswami, J. M. Borreguero, P. A. Pincus, B. G. Sumpter, Macromol¬ecules, 48, 9050–9059 (2015).
  3. D. Li, N. J. Wagner, J. Am. Chem. Soc., 135, 17547–17555 (2013).
  4. U. Ashraf, O. A. Chat, M. Maswal, S. Jabeen, A. A. Dar, RSC Adv., 5, 83608-83618, (2015).
  5. M. K. Baloch, A. Bano, G. Hameed, J. Chem. Soc. Pak., 24, 77-86, (2002).
  6. M. Siddiq, C. Wu, M. Nawaz, M. K. Baloch, K. Mehmood, J. Chem. Soc. Pak., 23, 200-204, (2001).
  7. D. Langevin, Adv. Colloid Interface Sci., 89, 467-484, (2001).
  8. J. Fundin, W. Brown, Macromolecules, 27, 5024-5031, (1994).
  9. R. Roe, J. Polymer. Eng. Sci., 25, 1103-1109, (2004).
  10. Y. Bayrak, Turk. J. Chem., 27, 487-492, (2003).
  11. P. R. Desai, N. J. Jain, R. K. Sharma, P. Bahadur, Colloids Surf. A, Physicochem. Eng. Asp., 178, 57-69, (2001).
  12. M. S. Khan, Z. Ali, Chin. J. Polym. Sci., 23, 29-35, (2005).
  13. N. V. Sastry, H. Hoffmann, Colloids Surf. Physicochem. Eng. Asp., 250, 247-261, (2004).
  14. T. P. Lodge, Macromol. Chem. Phys., 204, 265-273, (2003).
  15. E. D. Goddard, J. Colloids Interf. Sci., 256, 228-240, (2002).
  16. C. L. Mesa, J. Colloids Interf. Sci., 286, 148-157, (2005).
  17. D. G. F. Taylor, R. K. Thomas, J. Penfold, Adv. Colloids Interf. Sci., 132, 69-110, (2007).
  18. J. Skerjanc, K. Kogej, G. Vesnaver, J. Phys. Chem., 92, 6382-6385, (1988).
  19. P. M. Macdonald, D. Staring, Y. Yue, Langmuir, 9, 381-384, (1993).
  20. X. Li, Z. Lin, J. Cai, L. E. Scriven, H. T. Davis, J. Phys. Chem., 99, 10865- 10878, (1995).
  21. R. Zana, In Structure-Performance Relationships in Surfactants, 2nd ed.; Esumi, K., Ueno, M., Eds.; Marcel Dekker: New York, (2003), p. 547.
  22. M. Benrraou, B. Bales, R., Zana, J. Colloids Interf. Sci., 267, 519-523, (2003).
  23. A. D. Aprano, C. L. Mesa, L. Persi, Langmuir, 13, 5876-5880, (1997).
  24. J. Mata, T. Joshi, D. Varade, G. Ghosh, P. Bahadur, Colloids Surf. Physicochem. Eng. Asp., 247, 1-7, (2004).
  25. A. Khan, G. Fatima M. Usman, W. Harrison M. Siddiq J. Chem. Soc. Pak., 31, 731-737, (2009).
  26. M. K. Baloch, A. Farzana A. Rauf, G. Fatima, G. Hameed, J. Appl. Polym. Sci., 116, 2133-2142, (2010).
  27. M. Usman, M. A. Cheema, A. Khan, Z. H. Farooqi, V. Mosquera, M. Siddiq, J. Chil. Chem. Soc., 58, 1842-1845, (2013).
  28. M. J. Rosen, Surfactants and interfacial phenomenon, New York, (1978).
  29. O. Kosaka, P. Sehgal, H. Doe, Food Hydrocolloid., 22, 144-149, (2008).
  30. M. Polverari, T.G. M. Van de Ven, J. Phys. Chem., 100, 13687-13695, (1996).
  31. H. Gharibi, N. Takisawa, P. Brown, M. A. Thomson, D. M. Painter, D. M. Bloor, D. G. Hall, E. Wyn-Jones, J. Chem. Soc. Faraday Trans., 87, 707- 710, E. (1991).
  32. N. Takisawa, D. G. Hall, E. W. Jones, P. Brown, J. Chem. Soc. Faraday Trans., 84, 3059-3070, (1988).
  33. H. Gharibi, Ph.D Thesis, “Electrochemical and Kinetic Studies in Surfactant Solution”, University of Salford, (1991).
  34. J. M. Del Rio, C. Pombo, G. Prieto, V. Mosquera, F. Sarmiento, J. Colloids Interf. Sci., 172, 137-141, (1995).
  35. W. Zhang, L. Ganzuo, M. U. Jianhai, Q. Shen, L. Zheng, H. Liang, W. Chi, Chin. Sci. Bull., 45, 1854-1857, (2000).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP