JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 1 (2018): Journal of the Chilean Chemical Society
Original Research Papers

HEAVY METALS CONCENTRATION IN SEDIMENT OF LLUTA RIVER BASIN

S. V. Copaja
Departamento de Química. Facultad de Ciencias. Universidad de Chile
F. J. Muñoz
Departamento de Química. Facultad de Ciencias. Universidad de Chile
Published April 25, 2018
Keywords
  • Lluta River,
  • sediment,
  • heavy metals. Risk assessment code (RAC),
  • Threshold effect concentration (TEC),
  • Probable effect concentration (PEC)
How to Cite
Copaja, S. V., & Muñoz, F. J. (2018). HEAVY METALS CONCENTRATION IN SEDIMENT OF LLUTA RIVER BASIN. Journal of the Chilean Chemical Society, 63(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/591

Abstract

Northern Chile is characterized by water scarcity. The Lluta River, located in the XV region of Arica and Parinacota, is the one of the main rivers in northern Chile. The elevated levels of metals and metaloids in the river reduce the agricultural productivity and variety of species can be cultivated within the valley, which are of great importance for the consumption of the inhabitants of the area.

Heavy metals in river bottoms may cause various effects on the water quality, as such the capacity to accumulate metals; levels of toxicity and metal stabilization in sediments have often been considered a pollution index of a territory.

In this work the concentrations of Al, Cu, Fe, Mn, Mo, Pb and Zn from the pseudo-total and labile fraction of Lluta river sediments were studied. Samples from 10 sites along the river were collected. The sediments were characterized determining: pH, electrical conductivity, organic carbon (OC), organic total carbon (OTC), available phosphorus and boron. Heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS).

For the metals analyzed in the pseudo-total fraction, the highest concentrations found were: Al in the site 10, (17061 mg kg-1) and Fe on site 6, (29898 mg kg-1). For the labile fraction, highest concentrations of metals were: Al in site 6 (1079 mg kg-1), Fe in site 9, (275 mg kg -1) and Mn in site 9 (1578 mg kg-1).

Using the Risk assessment code (RAC), the site 6 presents the greatest risk with high values of Cu, Mn, Pb and Zn, followed by site 1 with high values of Mn, Cu and Zn, and site 9 with high values of Mn, Cu and Pb. On the other hand, the MacDonald PEC (probable effect concentration) and TEC (threshold effect concentration) toxicity criteria, showed that the sites 4 and 6 have levels above the TEC for Cu, Fe, Pb and Zn, and levels above the PEC at six sites for Mn.

References

  1. C.D.P. Ramila, E.D. leiva, C.A. Bonilla, P.A. Pasten, G.E. Pizarro J. Geochem. Exploration 150, 25 (2015).
  2. Bahamonde, N. e I. Vila. Sinopsis sobre la biología del Camarón de Río del Norte. Biol. Pesq. Chile. 5, 3, 1971.
  3. Dyer, B.. Systematic review and biogeography of the freshwater fishes of Chile. Estudios oceanológicos (Chile) 19, 77 (2000).
  4. Habit, E., Dyer, B. &Vila, I. Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana 70, 100 (2006).
  5. Direccion General de Aguas (DGA), 2004. Diagnostico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Ministerio de Obras Públicas. Republica de Chile. Cuenca del Río Lluta6.
  6. C. D. Leiva. P. Ramila, L.T. Vargas, C. R. Escauriaza, C.A. Bonilla, , J.M. Regan, P.A. Pasten. Sci. Total Environ. 466, 490 (2014).
  7. F. Albornoz, A. Torres, M.I. Acevedo. Idesia (Arica) 25, 73 (2007).
  8. A. Torres, E. Acevedo. Idesia (Arica) 26, 31 (2008).
  9. S. E. Manahan. Environmental Chemistry, 6th ed. Lewis Publishers: Chelsea, Boca Raton, USA, 1994; pp. 811.
  10. J. M. Bubb JM, J.N. Lester JN Water, Air, and Soil pollut 78, 279 (1994).
  11. S.V. Copaja, V.R.Nuñez, G.S. Muñoz, G.L. González, I.Vila I, D.E. Véliz J. Chil. Chem. Soc. 61 (2797). (2016).
  12. W. Solomons, N.M.de Rooij, H.Kerdijk, J.Bril J (1987) Hydrobiologia 149, 13 (1987).
  13. N. Riog, J. Sierra, I. Moreno-Garrido, E. Nieto, E. Pèrez, M. Shumacher, J. Blasco. Sci. Total Environ. 549, 287 (2016).
  14. U. Förster, W. Solomons, Environm. Technol. Lett. 1, 494 (1980).
  15. H. E. Belkin, H.M. Sparck, Environm Geol. 22, 106 (1993).
  16. U. Förster Int. J. Environm. An. Ch. 51, 5 (1993).
  17. J.T. W Chen, S.K. Tan, Water, Air and soil Pollut. 92, 273 (1996).
  18. J. A. Narváez, P. Richter, m. I. Toral J. Chil. Chem. Soc. 52, 1261 (2007).
  19. A. Kabata-Pendias, H. Pendias. Trace element in Soils and Plants 3erd ed. CRC Press: Boca Raton, FL USA (2001).
  20. U. Förstner, W. Solomons. Envirom. Geol. 39, 90 (1999).
  21. DGA (Dirección General de Aguas). Caracterización de Sedimentos Fluviales y su Relación con la Calidad del agua, 2008, pp 1-80.
  22. W. Calamano, J. Hong, U. Fosrstner. Water Science and Technology 28, 223 (1993).
  23. Orkun, I., Davutluoghlu, G. S., Demet, G. K., Turan, Y., G., Cagatayhan, B. F. Desalination 260, 199 (2010).
  24. X-Y Wu, Y. F. Yang, Aquaculture Reserach, 41, 1377, (2010).
  25. Ed. A. Passon, J. C. Alves, I. S. A. Dos Santos, J. P. H. Alves, C. A. B. Garcia, A. C. Spinola Costa, Microchem. J. 96, 50, (2010).
  26. G. Perin, L. Craboleda, M. Lucchese, R. Cirillo, I. Dotta, I., M. Zanette, Orio, Heavy metals speciation in the sediments of Northen Adriatic sea-a new approach for environmental toxicity determination: in Lekkas TD, editor: Heavy metal in the enviroment, 2010; pp. 45-46.
  27. D. D. MacDonald, C. Ingersoll, T. Berger, Arch. Environ. Contam. Toxicol., 39, 20, (2000).
  28. S. I. Simpson, G. E. Batley, A. A. S. Charlston, J. L. Dtauber, C. K. King, J. C. Chapman, R. V. Hyne, S. A. Gale, A. C. Roach, W. A. Maher, J. Sharyan. J, Handbook for Sediment Quality Assessment, (CSIRO Bangor, NSW), 2005; pp 9-19.
  29. L. C. Blackemore, P. L. Scarle, B. K. Daly, B. K. In Methods for Chemical of Analysis of Soils N. Z. Soil Bureau Scientific Report, 1987; pp 18-34.
  30. A. Sadzawka, M. A. Carrasco, R. Grez, M. L. Mora, H. Flores, A. Neuman, A. Métodos de Análisis de Suelos. Instituto de Investigaciones Agropecuarias (INIA). Serie Actas INIA Nº 34, 2006; pp 59-79E.D.
  31. EPA Method 3051, Microwave assisted acid digestion of sediments, sludges, soils, and oils, 1994.
  32. Cluster analysis electronic Text Book statarSoft “Copyright StataSoft, in 1984-2004.
  33. DGA (Dirección General de Aguas). Caracterización de Sedimentos Flu¬viales y su Relación con la Calidad del agua, 2008, pp 1-80.
  34. F. Burriel Marti, F. Lucena-Conde, S. Arribas-Jimeno, J. Hernadez Méndes. Química Analítica Cualitativa (Décimo Sexta Edición) (Editorial PARANINFO) Madrid, España. cap. XIX y XX, 2003.
  35. C. A. B. Garcia, M. S. Barreto, E. A. Passos, J. Patrocínio, H. Alves, J. Braz. Chem. Soc. 20, 1334 (2009).
  36. B. A. Schumacher, METHODS FOR THE DETERMINATION OF TOTAL ORGANIC CARBON (TOC) IN SOILS AND SEDIMENTS. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-02/069 (NTIS PB2003-100822), 2002.
  37. U. C. Gupta, Y.W. Jame, C.A. Campbell, A.J. Leyshon and W. Nicholaichuk, Can. J. Soil Sci., 65, 381 (1985).
  38. S. V. Copaja, G. Díaz, R. Toro, R.M. Tessada, P. Miranda, J. R. Morales, J. Chil. Chem. Soc., 57, 1400 (2012).
  39. S.V. Copaja, M. X. Molina, R.M. Tessada J. Chil. Chem. Soc., 58, 1986 (2014).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP