Vol 63 No 1 (2018): Journal of the Chilean Chemical Society
Original Research Papers


Muhammad Ramzan Saeed Ashraf Janjua
Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM) Dhahran
Published April 25, 2018
  • Triphenylamine dyes,
  • DFT,
  • Dye sensitized solar cells,
  • Additional acceptor


In this research article, we have designed triphenylamine (TPA) dyes with D-A-π-A structure and their electro-optical and charge injection properties have been calculated. The computational techniques are used to study the effect of additional acceptor in π-conjugated systems on absorption spectra and electron injection of the dyes. All the dyes have shown absorbance in visible region. The effect of additional acceptor on the performance of sensitizers in dye sensitized solar cells has also been determined. In theoretical examination electron injection efficiency (Фinject.) and light harvesting efficiency (LHE) have been calculated. The results indicate that the combination and selection of appropriate conjugated bridge in dye sensitizer is an important way to design efficient dyes.


  1. a) J. N. Clifford, E. Martinez-Ferrero, A. Viterisi, and E. Palomares, Chemical Society Reviews 40, 1635 (2011). b) Grätzel, M. Acc. Chem. Res. 2009, 42, 1788.
  2. a) B. O’Regan and M. Gratzel, Nature 353, 737 (1991). b) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
  3. A. Mahmood, Solar Energy 123, 127 (2016).
  4. a) T. Funaki, H. Funakoshi, O. Kitao, N. Onozawa-Komatsuzaki, K. Kasuga, K. Sayama, and H. Sugihara, Angewandte Chemie International Edition 51, 7528 (2012). b) S. B. Mane, C-F. Cheng, A. A. Sutanto, A. Datta, A. Dutta, C-H. Hung, Tetrahedron, 71, 42 (2015) 7977-7984.
  5. H. J. Jo, J. E. Nam, D.-H. Kim, H. Kim, and J.-K. Kang, Dyes and Pigments 102, 285 (2014).
  6. S. Kim et al., Journal of the American Chemical Society 128, 16701 (2006).
  7. Y. Gong et al., Chemical Communications 49, 4009 (2013).
  8. X. Ma, X. Mao, S. Zhang, X. Huang, Y. Cheng, and C. Zhu, Polymer Chemistry 4, 520 (2013).
  9. M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin, and M. Gratzel, RSC Advances 3, 7921 (2013).
  10. Y. Ooyama, N. Yamaguchi, I. Imae, K. Komaguchi, J. Ohshita, and Y. Harima, Chemical Communications 49, 2548 (2013).
  11. a) M.R.S.A. Janjua, Z.H. Yamani, S. Jamil, A. Mahmood, I. Ahmad, M. Haroon, M.H. Tahir, Z. Yang, S. Pan, Australian Journal of Chemistry, 69 (2016) 467-472. b) M.R.S.A. Janjua, Inorg. Chem. 51 (2012), 11306- 11314. c) M.R.S.A. Janjua, M.U. Khan, B. Bashir, M.A. Iqbal, Y. Song, S.A.R. Naqvi, Z.A. Khan, Comput. Theor. Chem. 994 (2012), 34-40.
  12. W. Li, Y. Wu, Q. Zhang, H. Tian, and W. Zhu, ACS Applied Materials & Interfaces 4, 1822 (2012).
  13. Y. Wu, X. Zhang, W. Li, Z.-S. Wang, H. Tian, and W. Zhu, Advanced Energy Materials 2, 149 (2012).
  14. S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian, and L. Han, Chemical Communications 48, 6972 (2012).
  15. A. D. Becke, The Journal of Chemical Physics 98, 5648 (1993).
  16. C. Lee, W. Yang, and R. G. Parr, Physical Review B 37, 785 (1988).
  17. M.R.S.A. Janjua, A. Mahmood, F. Ahmed, Can. J. Chem. 91 (2013), 1303-1309.
  18. J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, and Z.-M. Su, Journal of Materials Chemistry 22, 568 (2012).
  19. J. Autschbach, ChemPhysChem 10, 1757 (2009).
  20. A. Dreuw and M. Head-Gordon, Chemical Reviews 105, 4009 (2005).
  21. J. Preat, C. Michaux, D. Jacquemin, and E. A. Perpète, The Journal of Physical Chemistry C 113, 16821 (2009).
  22. D. Jacquemin, V. Wathelet, E. A. Perpète, and C. Adamo, Journal of Chemical Theory and Computation 5, 2420 (2009).
  23. M. Pastore, E. Mosconi, F. De Angelis, and M. Grätzel, The Journal of Physical Chemistry C 114, 7205 (2010).
  24. A. Irfan, R. Jin, A. G. Al-Sehemi, and A. M. Asiri, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 110, 60 (2013).
  25. A. A. Hasanein, Y. R. Elmarassi, and E. N. Kassem, Journal of Molecular Modeling 22, 115 (2016).
  26. T. Yanai, D. P. Tew, and N. C. Handy, Chemical Physics Letters 393, 51 (2004).
  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
  28. V. Barone and M. Cossi, The Journal of Physical Chemistry A 102, 1995 (1998).
  29. Z. T. ZENG Juan, ZANG XuFeng, KUANG DaiBin, MEIER Herbert, CAO DeRong, SCIENCE CHINA Chemistry 56, 505 (2013).
  30. S. Agrawal, P. Dev, N. J. English, K. R. Thampi, and J. M. D. MacElroy, Journal of Materials Chemistry 21, 11101 (2011).
  31. a) P. Qin, X. Yang, R. Chen, L. Sun, T. Marinado, T. Edvinsson, G. Boschloo, and A. Hagfeldt, The Journal of Physical Chemistry C 111, 1853 (2007).b) S. Södergren, A. Hagfeldt, J. Olsson, and S. E. Lindquist., ”Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor-Films in Photoelectrochemical Cells”, J. Phys. Chem., 98, 5552-5556 (1994). c) R. Gómez, and P. Salvador:” Photovoltage Dependence on Film Thickness and Type of Illumination in Nanoporous Thin Film Electrodes According to a Simple Diffusion Model”, Solar Energy Materials & Solar Cells, 88, 377-388 (2005). d) J. Ferber, R. Stangl, and J. Luther, ”An electrical model of the dye-sensitized solar cell”, Sol. Energy Mater. Sol. Cells, 53, 29-54 (1998).
  32. M. Gratzel, Nature 414, 338 (2001).
  33. G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S. M. Zakeeruddin, M. Gratzel, and P. Wang, Energy & Environmental Science 2, 92 (2009).
  34. H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic, San Diego, CA, 2001).
  35. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, Journal of the American Chemical Society 115, 6382 (1993).
  36. R. G. Pearson, Inorganic Chemistry 27, 734 (1988).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP