JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 63 No 1 (2018): Journal of the Chilean Chemical Society
Original Research Papers

THEORETICAL STUDY ON THE HYDROGEN BONDING INTERACTIONS IN PARACETAMOL-WATER COMPLEXES

Meifang Xu
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University. College of Mathematics Science, Tianjin Normal University.
Bohai Zhang
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University.
Qi Wang
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University.
Yuan Yuan
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University.
Le Sun
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University.
Zhengguo Huang
Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University.
Published April 25, 2018
Keywords
  • paracetamol,
  • hydrogen bonding interactions,
  • natural bond orbital (NBO),
  • quantum theory of atoms in molecules (QTAIM)
How to Cite
Xu, M., Zhang, B., Wang, Q., Yuan, Y., Sun, L., & Huang, Z. (2018). THEORETICAL STUDY ON THE HYDROGEN BONDING INTERACTIONS IN PARACETAMOL-WATER COMPLEXES. Journal of the Chilean Chemical Society, 63(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/573

Abstract

The paracetamol–water (PA–H2O) complexes formed by hydrogen bonding interactions were investigated at the MP2/6–311++G(d,p) level. Six PA–H2O complexes possessing various types of hydrogen bonds (H–bonds) were characterized by geometries, energies, vibrational frequencies. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) and the localized molecular orbital energy decomposition analysis (LMO–EDA) were performed to explore the nature of the hydrogen–bonding interactions in these complexes. The intramolecular H–bond formed between the methylene and carbonyl oxygen atom of paracetamol is retained in most of complexes. The H–bonds in PW1 and PW6 are stronger than other H–bonds, moreover, the researches show that both the hydrogen bonding interaction and structural deformation play important roles for the relative stabilities of PA–H2O complexes.

References

  1. M. Sciskalska, M. Sliwinska-Mosson, M. Podawacz, W. Sajewicz and H. Milnerowicz, Drug. Chem. Toxicol. 38, 121 (2015).
  2. W.S. Waring, H. Jamie and G.E. Leggett, Hum. Exp. Toxicol. 29, 63 (2010).
  3. M. Naggayi, N. Mukiibi and E. Iliya, Afr. Health. Sci. 15, 598 (2015).
  4. S.B.K. Mahadevan, P.J. McKiernan, P. Davies and D.A. Kelly, Arch. Dis. Child. 91, 598 (2006).
  5. M. Cekmen, Y.O. Ilbey, E. Ozbek, A. Simsek, A. Somay and C. Ersoz, Food Chem. Toxicol. 47, 1480 (2009).
  6. P. Abraham, Nephrology. 10, 623 (2005).
  7. N.V. Nayyer, J. Byers and C. Marney, Brit. Dent. J. 216, 229 (2014).
  8. P. Marzuillo, S. Guarino and E. Barbi, Eur. J. Pediatr. 173, 415 (2014).
  9. A.-R. Marzilawati, Y.-Y. Ngau and S. Mahadeva, BMC Pharmacol. Toxico. 13, 8 (2012).
  10. H. Jaeschke, Digest. Dis. 33, 464 (2015).
  11. E.W. Holt, S. DeMartini and T.J. Davern, J. Clin. Gastroenterol. 49, 790 (2015).
  12. G.G. Graham, M.J. Davies, R.O. Day, A. Mohamudally and K.F. Scott, Inflammopharmacology. 21, 201 (2013).
  13. M.L. Ramos, J.F. Tyson and D.J. Curran, Anal. Proc. incl. Anal. Comm. 32, 175 (1995).
  14. P.A. Mosier-Boss, S.H. Lieberman and R. Newbery, Appl. Spectrosc. 49, 630 (1995).
  15. B.B. Ivanova, J. Mol. Struct. 738, 233 (2005).
  16. I.G. Binev, P. Vassileva-Boyadjieva and Y.I. Binev, J. Mol. Struct. 447, 235 (1998).
  17. E. Dreassi, G. Ceramelli, P. Corti, M. Massacesi and P.L. Perruccio, Analyst. 120, 2361 (1995).
  18. J.M. Beames and A.J. Hudson, Phys. Chem. Chem. Phys. 12, 4157 (2010).
  19. Y. Danten, T. Tassaing and M. Besnard, J. Phys. Chem. A. 110, 8986 (2006).
  20. S.J. Lee, A. Min, Y. Kim, A. Ahn, J. Chang, S.H. Lee, M.Y. Choi and S.K. Kim, Phys. Chem. Chem. Phys. 13, 16537 (2011).
  21. M. Yoosefian and N. Etminan, RSC Adv. 5, 31172 (2015).
  22. S. Rai, H. Singh and U.D. Priyakumar, RSC Adv. 5, 49408 (2015).
  23. K.H. Moller, A.S. Hansen and H.G. Kjaergaard, J. Phys. Chem. A. 119, 10988 (2015).
  24. M. Izadyar, M. Khavani and M.R. Housaindokht, Phys. Chem. Chem. Phys. 17, 11382 (2015).
  25. Z.G. Huang, Y.M. Dai and L. Yu, Struct. Chem. 21, 863 (2010).
  26. L.F. Guo, Z.G. Huang, T.T. Shen, L.L. Ma and X.Q. Niu, Chin. J. Chem. 31, 1079 (2013).
  27. P.L.A. Popelier: Atoms in Molecules: An Introduction (Prentice Hall, City, 2000).
  28. C.F. Matta and R.J. Boyd: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (WILEY-VCH Verlag GmbH & Co. KGaA, City, 2007).
  29. A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev. 88, 899 (1988).
  30. P.F. Su and H. Li, J. Chem. Phys. 131, 014102 (2009).
  31. J. Xi and X. Xu, Phys. Chem. Chem. Phys. 18, 6913 (2016).
  32. S.K. Singh, S. Kumar and A. Das, Phys. Chem. Chem. Phys. 16, 8819 (2014).
  33. J.J. Panek, A. Filarowski and A. Jezierska-Mazzarello, J. Chem. Phys. 139, 154312 (10 pp.) (2013).
  34. A. Lakshmipriya, S.R. Chaudhari, A. Shahi, E. Arunan and N. Suryaprakash, Phys. Chem. Chem. Phys. 17, 7528 (2015).
  35. M. Jablonski and M. Palusiak, J. Phys. Chem. A. 116, 2322 (2012).
  36. L.L. Ma, Z.G. Huang, X.Q. Niu, T.T. Shen and L.F. Guo, Comput. & Theor. Chem. 1017, 14 (2013).
  37. E. Espinosa, I. Alkorta, J. Elguero and E. Molins, J. Chem. Phys. 117, 5529 (2002).
  38. U. Koch and P.L.A. Popelier, J. Phys. Chem. 99, 9747 (1995).
  39. W.D. Arnold and E. Oldfield, J. Am. Chem. Soc. 122, 12835 (2000).
  40. S. Jenkins and I. Morrison, Chem. Phys. Lett. 317, 97 (2000).
  41. S.J. Grabowski, W.A. Sokalski and J. Leszczynski, J. Phys. Chem. A. 110, 4772 (2006).
  42. L.F. Pacios, J. Phys. Chem. A. 108, 1177 (2004).
  43. A.E. Reed, F. Weinhold, L.A. Curtiss and D.J. Pochatko, J. Chem. Phys. 84, 5687 (1986).
  44. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox: Gaussian09, (Gaussian, Inc., City, 2009).
  45. F. Biegler-König and J. Schönbohm: AIM2000, (University of Applied Sciences, City, 2000).
  46. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
  47. H.K. Wang, Z.G. Huang, T.T. Shen and L.F. Guo, Struct. Chem. 23, 1163 (2012).
  48. H.K. Wang, Z.G. Huang, T.T. Shen and L.F. Guo, J. Mol. Model. 18, 3113 (2012).
  49. L. Yu, Y.H. Wang, Z.G. Huang, H.K. Wang and Y.M. Dai, Int. J. Quantum Chem. 112, 1514 (2012).
  50. X.Q. Niu, Z.G. Huang, L.L. Ma, T.T. Shen and L.F. Guo, J. Chem. Sci. 125, 949 (2013).
  51. Z.G. Huang, L. Yu, Y.M. Dai and H.K. Wang, Struct. Chem. 22, 57 (2011).
  52. Z.G. Huang, L. Yu and Y.M. Dai, Int. J. Quantum Chem. 111, 3915 (2011).
  53. Z.G. Huang, Y.M. Dai, L. Yu and H.K. Wang, J. Mol. Model. 17, 2609 (2011).
  54. Z.G. Huang, L. Yu, Y.M. Dai and H.K. Wang, J. Mol. Struct. (Theochem). 960, 98 (2010).
  55. Z.G. Huang, L. Yu and Y.M. Dai, Struct. Chem. 21, 855 (2010).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP