JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 65 No 1 (2020): Journal of the Chilean Chemical Society
Original Research Papers

MODELLING REVERSIBLE INHIBITION OF IRREVERSIBLE ELECTRO-OXIDATION

Milivoj lovric
Lovric company
Šebojka Komorsky-Lovrić
Lovric company
Published February 5, 2020
Keywords
  • Voltammetry,
  • Inhibition,
  • Oxide,
  • Simulation
How to Cite
lovric, M., & Komorsky-Lovrić, Šebojka. (2020). MODELLING REVERSIBLE INHIBITION OF IRREVERSIBLE ELECTRO-OXIDATION. Journal of the Chilean Chemical Society, 65(1), 4661-4663. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/528

Abstract

Totally irreversible electro-oxidation of dissolved reactant that is inhibited by the formation of oxide on the electrode surface is analysed theoretically. In the reverse, cathodic branch of staircase cyclic voltammogram these two parallel reactions exhibit both cathodic minimum and anodic maximum. The potentials of these extremes depend on the kinetics of oxide formation.

croatian.jpg

References

  1. M. Metikoš-Huković, R. Babić, Y. Piljac, J. New Mater. Electrochem. Systems, 7, 179 (2004).
  2. A. S. A. Khan, R. Ahmed, M. L. Mirza, Port. Electrochim. Acta, 27, 429 (2009).
  3. A. B. Kasshyout, A. B. A. A. Nassr, L. Giorgi, T. Maiyalagan, N. A, B. Youssef, Int. J. Electrochem. Sci., 6, 379 (2011).
  4. D. Zhang, L. Zhang, W. Zhang, M. Huo, J. Yin, G. Dang, Z. Ren, Q. Zhang, J. Xie, S. S. Mao, J. Materiomics, 3, 135 (2017).
  5. S. Haghnegahdar, M. Noroozifar, Electroanalysis, 29, 2896 (2017).
  6. W. Ye, Y. Chen, Y. Zhou, J. Fu, W. Wu, D. Gao, F. Zhou, C. Wang, D. Xue, Electrochim. Acta, 142, 18 (2014).
  7. M. M. Momeni, Port. Electrochim. Acta, 33, 331 (2015).
  8. T. Sheng, X. Lin, Z. Y. Chen, P. Hu, S. G. Sun, Y. Q. Chu, C. A. Ma, W. F. Lin, Phys. Chem. Chem. Phys., 17, 25235 (2015).
  9. L. C. Ordoñez, P. Roquero, J. Ramirez, P. J. Sebastian, Int. J. Electrochem. Sci., 11, 5364 (2016).
  10. R. Liang, A. Hu, J. Persic, Y. N. Zhou, Nano-Micro Lett., 5, 202 (2013).
  11. X. Zhong, J. Chen, L. Yang, X. Sun, Indian J. Chem., 47 A, 504 (2008).
  12. R. Carrera Cerritos, M. Guerra-Balcazar, R. Fuentes Ramirez, J. Ledesma -Garcia, L. Gerardo Arriaga, Materials, 5, 1686 (2012).
  13. D. A. Cantane, W. F. Ambrosio, M. Chatenet, F. H. B. Lima, J. Electroanal. Chem., 681, 56 (2012).
  14. J. Perez, V. A. Paganin, E. Antolini, J. Electroanal. Chem., 654, 108 (2011).
  15. A. F. B. Barbosa, V. L. Oliveira, J. van Drunen, G. Tremiliosi - Filho, J. Electroanal. Chem., 746, 31 (2015).
  16. C. A. Martins, P. S. Fernandez, H. E. Troiani, M. E. Martins, G. A. Camara, J. Electroanal. Chem., 717 – 718, 231 (2014).
  17. M. Etesami, N. Mohamed, Int. J. Electrochem. Sci., 6, 4676 (2011).
  18. Z. Al Amri, M. P. Mercer, N. Vasiljević, Electrochim. Acta, 210, 520 (2016).
  19. L. K. Bieniasz, Modelling electroanalytical experiments by the integral equation method, Springer, Berlin, 2015.
  20. D. Britz, J. Strutwolf, Digital simulation in electrochemistry, Springer, Berlin, 2016.
  21. M. Lovrić, Š. Komorsky-Lovrić, Electrochem. Commun., 86, 48 (2018).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP