JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 4 (2017): Journal of the Chilean Chemical Society
Original Research Papers

A PRELIMINARY STUDY ON ELECTROCATALYTIC REDUCTION OF CO2 USING FAC-ReI(CO)3(4,4’-DIMETHYL- 2,2’-BIPYRIDYL)((E)-2-((3-AMINO-PYRIDIN-4-YLIMINO)-METHYL)-4,6-DI-TERT-BUTYLPHENOL))+ COMPLEX

Juan Carlos Canales
Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile
Alexander Carreño
Center of Applied Nanosciences (CANS), Universidad Andrés Bello Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores (MECB), ICM
Diego Oyarzún
Center of Applied Nanosciences (CANS), Universidad Andrés Bello
Juan Manuel Manríquez
Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores (MECB), ICM
Ivonne Chávez
Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores (MECB), ICM
Published February 9, 2018
Keywords
  • Rhenium tricarbonyl complexes,
  • reduction carbon dioxide,
  • vitreous carbon,
  • electrochemistry
How to Cite
Canales, J. C., Carreño, A., Oyarzún, D., Manríquez, J. M., & Chávez, I. (2018). A PRELIMINARY STUDY ON ELECTROCATALYTIC REDUCTION OF CO2 USING FAC-ReI(CO)3(4,4’-DIMETHYL- 2,2’-BIPYRIDYL)((E)-2-((3-AMINO-PYRIDIN-4-YLIMINO)-METHYL)-4,6-DI-TERT-BUTYLPHENOL))+ COMPLEX. Journal of the Chilean Chemical Society, 62(4). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/475

Abstract

Several research to explore the possible conversion of CO2 using rhenium(I) tricarbonyl complexes have been reported the last years. In the present work, we investigated a potential use of fac-Re(CO)3(4,4’-di-methyl-2,2’-bipyridyl)L+ complex (C2), where L is an electron-withdrawing ancillary ligands which present an intramolecular hydrogen bond (IHB), in a preliminary electrocatalytic reduction of CO2. The C2 complex was synthesized and characterized according to reported methods earlier. The cyclic voltammogram profile for the C2 complex were studied in dichloromethane under inert atmosphere, and it shows a typical behavior for an electrocatalytic process, the C2 complex illustrate the electrochemical reaction mechanism corresponds to an electrochemical–chemical–electrochemical pathway (ECE). Also, a Vitreous Carbon plate used as working electrode was employed and modified by cycling the anodic region of C2 in CH2Cl2 which involve the oxidative redox response for the -NH2 and -OH groups. The voltammogram profile involve shows a polymeric deposit on the plate surface in a CO2 saturated solution (pH=7.0). A strong electrocatalytic discharge of current is obtained with a wave foot of -1.3 V showing that C2 have the potential to be used in electrocatalyst CO2 reduction.

References

  1. J.L. Wedding , H.H. Harris, C.A. Bader, S.E. Plush, R. Mak, M. Massi, D.A. Brooks, B. Lai B., S. Vogt, M.V. Werrett, P.V. Simpson, B.W. Skelton, S. Stagni, Metallomics., 9, 382, (2017).
  2. S.T. Lam, N. Zhu, V.K.M. Au, V. Wing-Wah Yam, Polyhedron, 86, 10, (2015).
  3. J.M. Villegas, S.R. Stoyanov, W. Huang, D.P. Rillema, Inorg. Chem., 44, 2297, (2005).
  4. L. Wallace, D.P. Rillema, Inorg. Chem., 32, 3836, (1993).
  5. L.N. Winslow, D.P. Rillema, J.H. Welch, P. Singh, Inorg. Chem., 28, 1596, (1989).
  6. M.S. Wrighton, D.L. Morse, L. Pdungsap, J. Am. Chem. Soc., 8, 2073, (1975).
  7. M.P. Coogan, Platts J.A., Chem. Commun., 52, 12498, (2016).
  8. M. Kaplanis, G. Stamatakis, V.D. Papakonstantinou, M. Paravatou- Petsotas, C.A. Demopoulos, C.A. Mitsopoulou, Journal of Inorganic Biochemistry, 135, 1, (2014).
  9. T.Y. Kim, A.B.S. Elliott, K.J. Shaffer, C.J. McAdam, K.C. Gordon, J.D. Crowley, Polyhedron, 52, 1391, (2013).
  10. A. Carreño, M. Gacitua, E. Schott, X. Zarate, J.M. Manriquez, M. Preite, S. Ladeira, A. Castel, N. Pizarro, A. Vega, I. Chavez, R. Arratia-Perez, New J. Chem., 39, 5725, (2015).
  11. L.A. Sacksteder, A.P. Zipp, E.A. Brown, J. Streich, J.N. Demas, B.A. DeGraf, Inorg. Chem., 29, 4335, (1990).
  12. B. Machura, M. Wolff, E. Benoist, Y. Coulais, Journal of Organometallic Chemistry, 724, 82, (2013).
  13. G.M. Hasselmann, G.J. Meyer, The Journal of Physical Chemistry B, 103, 7671, (1999).
  14. M.K. Bera, C. Chakraborty, S. Malik, New J. Chem., 40, 8074, (2016).
  15. A. Carreño, M. Gacitúa, D. Páez-Hernández, R. Polanco, M. Preite, J.A. Fuentes, G.C. Mora, I. Chávez, R. Arratia-Pérez, New. J. Chem., 39, 7822, (2015).
  16. S.A. Chabolla, E.A. Dellamary, C.W. Machan, F.A. Tezcan, C.P. Kubiak, Inorganica Chimica Acta, 422, 109, (2014).
  17. A. Carreño, M. Gacitúa, J.A. Fuentes, D. Páez-Hernández, J.P. Peñaloza, C. Otero, M. Preite, E. Molins, W.B. Swords, G.J. Meyer, J.M. Manríquez, R. Polanco, I. Chávez, R. Arratia-Pérez, New J. Chem., 40, 7687, (2016).
  18. A. Carreño, A.A. Aros, C. Otero, R. Polanco, M. Gacitua, R. Arratia- Perez, J.A. Fuentes, New J. Chem., 41, 2140, (2017).
  19. G. Balakrishnan, T. Rajendran, K.S. Murugan, M.S. Kumar, V.K. Sivasubramanian, M. Ganesan, A. Mahesh, T. Thirunalasundari, S. Rajagopal, Inorganica Chimica Acta, 434, 51, (2015).
  20. F.L. Thorp-Greenwood, Organometallics, 31, 5686, (2012).
  21. W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, Chem. Rev., 115, 12936, (2015).
  22. T.A. Manes T.A., M.J. Rose, Inorganic Chemistry Communications, 61, 221, (2015).
  23. K. Parimal K., S. Vyas S., C.H. Chen, C.M. Hadad, A.H. Flood, Inorganica Chimica Acta, 374, 620, (2011).
  24. Y. Kuninobu, K. Takai K, Chem. Rev., 111, 1938, (2011).
  25. C.W. Machan, S.A. Chabolla, C.P. Kubiak, Organometallics, 34, 4678, (2015).
  26. J. Hawecker, J.M. Lehn, R. Ziezzel, J. Chem. Soc., Chemm. Commun., 536, (1983).
  27. J. Hawecker, J.M. Lehn, R.J. Ziezzel, J. Chem. Soc., Chemm. Commun., 6, 328, (1984).
  28. J. Hawecker, J.M. Lehn, R.J. Ziezzel, Helv. Chim. Acta, 69, 1990, (1986).
  29. J.M. Smieja, C.P. Kubiak, Inorg. Chem., 49, 9283, (2010).
  30. G. Valenti, M. Panigati, A. Boni, G. D’Alfonso, F. Paolucci, L. Prodi, Inorganica Chimica Acta, 417, 270, (2014).
  31. M.V. Vollmer, C.W. Machan, M.L. Clark, W.E. Antholine, J. Agarwal, H.F. Schaefer III, C.P. Kubiak, J.R. Walensky, Organometallics, 34, 3, (2015).
  32. C. Ko, A.W.Y Cheung., S.M. Yiu, Polyhedron, 86, 17, (2015).
  33. A. W. Kleij, M. Kuil, D. M. Tooke, M. Lutz, A. L. Spek, J. N. H. Reek, Chem. Eur. J., 11, 4743, (2005).
  34. A. Carreño, A. Vega, X. Zarate, E. Schott, M. Gacitua, N. Valenzuela, M. Preite, J.M. Manriquez, I. Chavez, Quim. Nova, 37, 584, (2014).
  35. A. Carreño, M. Gacitua, E. Schott, X. Zarate, J.M. Manriquez, M. Preite, S. Ladeira, A. Castel, N. Pizarro, A. Vega, I. Chavez, R. Arratia-Perez, New J. Chem, 39, 5725, (2015).
  36. G.F. Manbeck, J.T. Muckerman, D.J. Szalda, Y. Himeda, E. Fujita, J. Phys. Chem. B, 24, 7457, (2015).
  37. A. Carreño, M. Gacitua, E. Molins, R. Arratia-Perez, Chem. Pap. DOI 10.1007/s11696-017-0196-6, (2017).
  38. R. Czerwieniec, A. Kapturkiewicz, J. Lipkowski, J. Nowacki, Inorg. Chim. Acta, 358, 2701, (2005).
  39. G.F. Manbeck, J.T. Muckerman, D.J. Szalda, Y. Himeda, E. Fujita, J. Phys. Chem. B, 24, 7457, (2015).
  40. W. Herzog, C. Bronner, S. Loffler, B. He, D. Kratzert, D. Stalke, A. Hauser, O.S. Wenger, Chem. Phys. Chem., 14, 1168, (2013).
  41. R. Lopez, B. Loeb, D. Striplin, M. Devenney, K. Omberg, T.J. Meyer, J. Chil. Chem. Soc., 49, 149, (2004).
  42. M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, J. Phys. Chem. C., 111, 4465, (2007).
  43. W. Xu, B. Peng, J. Chen, M. Liang, F. Cai, J. Phys. Chem. C, 112, 874, (2008).
  44. M.W. Louie, H.W. Liu, M.H.C. Lam, T.C. Lau, K.K.W. Lo, Organometallics, 28, 4297, (2009).
  45. C. Bruckmeier, M.W. Lehenmeier, R. Reithmeier, B. Rieger, J. Herranz, C. Kavakli, Dalton Trans., 41, 5026, (2012).
  46. A. W. Kleij, D.M. Tooke, A.L. Spek, J.N.H. Reek, Eur. J. Inorg. Chem., 4626, (2005).
  47. S. Sato, T. Morimoto, O. Ishitani, Inorg. Chem., 46, 9051, (2007).
  48. A. Blake, N. Champness, T. Easun, D. Allan, H. Nowel, M. George, J. Sun, Nat. Chem., 2, 688, (2010).
  49. C.W. Machan, M.D. Sampson, S.A. Chabolla, T. Dang, C.P. Kubiak, Organometallics, 33, 4550, (2014).
  50. M.T. Zhang, T. Irebo, O. Johansson, L. Hammarstrom, J. Am. Chem. Soc., 133, 13224, (2011).
  51. J. Agarwal, E. Fujita, H.F. Schaefer, J.T. Muckerman, J. Am. Chem. Soc., 134, 5180, (2012).
  52. Q. Zeng, M. Messaoudani, A. Vlcek Jr., F. Hartl, Eur. J. Inorg. Chem., 471, (2012).
  53. P.I. Nagy, Int. J. Mol. Sci., 15, 19562, (2014).
  54. H.C. Bertrand, S. Clede, R. Guillot, F. Lambert, C. Policar, Inorg. Chem. 53, 6204, (2014).
  55. B. Machura, M. Wolff, E. Benoist, Inorganic Chemistry Communications, 29, 101, (2013).
  56. C. Costentin, G. Passard, M. Robert, J.M. Saveant, PNAS, 42, 14990, (2014).
  57. O.S. Wenger, Coord. Chem. Rev., 282, 150, (2015).
  58. J. Sanchez, B.L. Rivas, J.C. Moutet, D.P. Oyarzun, J. Chil. Chem. Soc., 61, 3277, (2016).
  59. M.A. Riquelme, M. Isaacs, M. Lucero, E. Trollund, M.J. Aguirre, J. Canales, J. Chil. Chem. Soc., 48, 89, (2003).
  60. M. del Valle, Y. Chen, A. Alarcon, A. Ramos, L. Hernandez, C. Canales, B. Gonzalez, J. Chil. Chem. Soc., 58, 1991, (2013).
  61. A. Carreño, E. Solís-Céspedes, D. Paez-Hernandez, R. Arratia-Perez, Chem. Phys. Letter, 685, 354 (2017).
  62. M. Isaacs, J.C. Canales, A. Riquelme, M. Lucero, M.J. Aguirre, J. Costamagna, Journal of Coordination Chemistry, 56, 1193, (2003).
  63. C. Costentin, J. C. Canales, B. Haddou, J.M. Saveant, J. Am. Chem. Soc., 135, 17671, (2013).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP