- Nanoparticles,
- Chitosan,
- TEM
Copyright (c) 2018 Journal of the Chilean Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
One of the applications of chitosan is based on its ability to stabilized metallic nanoparticles with minimum chitosan metal molar ratio.
This work describes the synthesis and characterization of Ag, Au, Pt, and Cu nanoparticles stabilized by chitosan through chemical reduction of metallic salts by sodium borohydride (NaBH4).
The properties of bionanocomposites were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions and functional groups. The samples were characterized by TEM, electron diffraction, UV-Visible and FTIR. The stability of the colloids at room temperature were also measured. A high stability for the colloidal dispersion with chitosan can be observed (> three months). We found that TEM studies show a size distribution between 6 and 10 nm, depending on metals and chitosan metal relation. Electron diffraction analysis for the metallic nanoparticles shows the presence of Ag, Au, Pt and Cu. The FT-IR exhibit the presence of the chitosan in the stabilisation of metallic nanoparticles.
References
- K. Sannegowda, A. Shambhulinga, N. Manjunatha, M. Imadadulla, M. Hojamberdiev, Dyes and Pigments, 120, 155, (2015).
- X. Liu, H. Cheng, P. Cui, Applied Surface Science. 292, 695, (2014).
- N. Misra, M. Rapolu, S. Rao, L. Varshney, V. Kumar, Optics & Laser Technology. 79, 24, (2016).
- A. Akbari-Sharbaf, S. Ezugwu, M. Shafiq, M. Cottam, G. Fanchini, Carbon. 95, 199 (2015).
- G. Cárdenas, Y. León, Y. Moreno, O. Peña, Colloid. Polim. Sci. 284, 644, (2006).
- C. Chin Yu, Y. Chuan Liu, K. Hsuan Yang, C. Ching Li, C. CaiWang, Materials Chemistry and Physics. 125, 109, (2011).
- S. Boufi, M. Rei Vilar, A. Ferraria, A. Botelho do Rego, Colloids and Surface A: physicochem. Eng. Aspects. 439, 151, (2013).
- Y.León, I. Brito, G. Cárdenas, O. Godoy, J. Chil. Chem. Soc. 54, 1, 51, (2009).
- T.C. Rocha, H. Winnischofer, E. Westphal, D. Zanchet, J. Phys. Chem. C. 111, 3901, (2007).
- D. Özhava, N.Z. Kılıçaslan, S. Özkar, Applied Catalysis B: Environmental, 162, 573, (2015).
- L. Hu, A. Pfirman, G. Chumanov, Applied Surface Science, 357, 1587, (2015).
- X. Yan, H. Liu, K. Liew, J. Mater. Chem. 11, 3387, (2001).
- T. Teranishi, M. Miyake, Chem. Mater. 10, 594, (1998).
- P. Geetha, M.S. Latha, S. Pillai, B. Deepa, K. S. Kumar, M. Koshy, J. Molecular Structure, 1105, 54, (2016).
- H. Huang, X.Yang, Colloid Surf. A: Physicochemistry Engineering Aspects. 226, 77, (2003).
- D. Wei, W. Qian, Colloid Surf. B: Biointerfaces. 62, 136, (2008).
- P. Kumar, J. Dutta, V. Tripathi, J. Scientific and Industrial Research. 63, 20, (2004).
- H. Yi, L. Wu, W. Bentley, R. Ghodssi, G. Rubloff, J. Cunver, G. Payne, Biomacromolecules. 6, 288, (2005).
- G. Cárdenas, E. Taboada, G. Cabrera, J. Chil. Chem. Soc. 48, 1, 7, (2003).
- G. Cárdenas, J. Díaz, M. Meléndrez, C. Cruzat, A. García, Polym. Bull. 62, 511, (2009).
- A. Tiwari, A. Mishra, A. Kuvarega, B. Mamba. Carbohydrate Polymers. 92, 1402, (2013).
- L. Wu, S. Shafii, M. Nordin, K. Liew, J. Li. Materials Chemistry and Physics. 137, 493, (2012).
- G. Cárdenas, J. Díaz, M. Meléndrez, C. Cruzat, O. Peña, Colloid Polym. Sci. 289, 21, (2011).
- A. Stevenson, D. Blanco, S. Civit, S. Antoranz, A. iglesias, S. Trigueros, Nanoscale research Letters, 7, 151, (2012).
- J. An, Q. Luo, X. Yuan, D. Wang, X. Li, J. Appl. Polym. Sci.120, 3180, (2011).
- D. Wei, Y. Ye, X. Jia, C. Yuan, W. Qian, Carbohydrate Research. 345, 74, (2010).
- N. Zain, A. Stapley, G. Shama, Carbohydrate Polymers. 112, 195, (2014).
- R. Muzzarelli, Carbohydrate Polymers. 84, 54, (2011).
- M. Moharram, S. Khalil, H. Sherif, W. Khalil, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126, 1, (2014).
- A. Travan, C. Pelillo, I. Donati, et al, Biomacromolecules, 10, 1429, (2009).
- A. Manikandan, M. Sathiyabama, J. Nanomed. Nanotechnol, 6, 1, (2015).
- Powder Diffraction File, Inorganic Phases, International Centre for Diffraction data, Pennsylvania, USA. JCPDS 1997.
- D. Chunfa; Z. Xianglin; C. Hao; C. Chuanliang, Rare Metal Materials and Engineering. 45, 0261, (2016).
- D. Wei, W. Sun, Y. Qian, Carbohydrate Research. 344, 2378, (2009).
- J. Creighton, D. Eadon, J. Chem. Soc. Faraday Trans. 87, 3881, (1981).
- S. Nergiz, S. Singamaneni, Appl. Mater. Interfaces. 3, 945 (2011).