- Ionic liquid,
- Chitin,
- Chitosan,
- Cellulose,
- Interactions
Copyright (c) 2018 Journal of the Chilean Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
In order to deepen understanding the interactions between ionic liquid and chitin/chitosan/ cellulose at the molecular level, we have performed a study on the electronic structures, topological properties, nonconvalent interactions between 1-ethyl-3-methyl imidazolium chloride and chitin/chitosan/cellulose by using density functional theory. The results indicate that interactions between chitin/chitosan/cellulose and 1-ethyl-3-methyl imidazolium chloride are stronger that the intra-interaction of chitin/chitosan/cellulose, implying that chitin/ chitosan/ cellulose can dissolve in 1-ethyl-3-methyl imidazolium chloride.
References
- M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603-632.
- R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc., 2002, 124, 4974-4975.
- H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev., 2012, 41, 1519-1537.
- H. Xie, S. Zhang, S. Li, Green Chem., 2006, 8, 630–633.
- R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna, Chem. Commun., 2006, 1271-1273.
- D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chem., 2007, 9, 63–69.
- N. Sun, M. Rahman,Y. Qin, M. L. Maxim, H. Rodrıguez, R. D. Rogers, Green Chem., 2009, 11, 646–655.
- B. Kosan, C. Michels, F. Meister, Cellulose, 2008, 15, 59–66.
- S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu, Green Chem., 2006, 8, 325–327.
- J. Vitz, T. Erdmenger, C. Haensch, U. S. Schubert, Green Chem., 2009, 11, 417–424.
- S. Barthela, T. Heinze, Green Chem., 2006, 8, 301-306.
- A. Pinkert, K. N. Marsh, S. Pang, M. P. Staiger, Chem. Rev., 2009, 109, 6712–6728.
- L. Feng, Z. Chen, J. Mol. Liq., 2008, 142, 1-5.
- R. S. Payal, R. Bharath, G. Periyasamy, S. Balasubramanian, J. Phys. Chem. B, 2012, 116, 833–840.
- Z. Ding, Z. Chi, W. Gu, S. Gu, J. Liu, H. Wang, Carbohyd. Polym., 2012, 89, 7-16.
- Y. Zhao, X. Liu, J. Wang, S. Zhang, Carbohyd. Polym., 2013, 94, 723-730.
- Q. Tian, S. Liu, X. Sun, H. Sun, Z. Xue, T. Mu, Carbohyd. Res., 2015, 408, 107-113.
- Y. Yao, Y. Li, X. Liu, X. Zhang, J. Wang, X. Yao, S. Zhang, Chin. J. Chem. Eng., 2015, 23(11), 1894-1906.
- B. Cao, J. Du, D. Du, H. Sun, X. Zhu, H. Fu, Carbohyd. Polym., 2016, 149, 348-356.
- B. Delley, J. Chem. Phys., 1990, 92, 508-517.
- B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
- S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553-566.
- F. Biegler-Konig, J. Schonbohm, J. Comput. Chem., 2002, 23, 1489-1494.
- T. Lu, F. Chen, J. Mol. Graph. Model., 2012, 38, 314-323.
- T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
- P. Lipkowski, S. J. Grabowski, T. L. Robinson, J. Leszczynski, J. Phys. Chem. A, 2004, 108, 10865-10872.
- E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.