JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 3 (2017): Journal of the Chilean Chemical Society
Original Research Papers

SYNTHESIS AND MORPHOLOGICAL CHARACTERIZATION OF NANOCOMPOSITE BASED ON ANODIC TiO2 NANOTUBES AND POLY(N-MALEOYL GLYCINE-CO-ACRYLIC ACID)

Diego P. Oyarzún
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andrés Bello
Guadalupe del C. Pizarro
Laboratorio de Polímeros y Ciencia de los Materiales, Departamento de Química, Universidad Tecnológica Metropolitana
Andrés Asenjo
Laboratorio de Polímeros y Ciencia de los Materiales, Departamento de Química, Universidad Tecnológica Metropolitana
Alejandra Tello
Facultad de Ciencias Naturales, departamento de Química y Biologia, Universidad de Atacama
Rudy Martin-Trasanco
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andrés Bello
César Zúñiga
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andrés Bello
Julio Sánchez
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Ramiro Arratia-Perez
Centro de Nanociencias Aplicadas (CENAP), Facultad de Ciencias Exactas, Universidad Andrés Bello
Published September 2, 2017
Keywords
  • polymer nanocomposite,
  • morphological characterization,
  • TiO2 nanotubes
How to Cite
Oyarzún, D. P., Pizarro, G. del C., Asenjo, A., Tello, A., Martin-Trasanco, R., Zúñiga, C., Sánchez, J., & Arratia-Perez, R. (2017). SYNTHESIS AND MORPHOLOGICAL CHARACTERIZATION OF NANOCOMPOSITE BASED ON ANODIC TiO2 NANOTUBES AND POLY(N-MALEOYL GLYCINE-CO-ACRYLIC ACID). Journal of the Chilean Chemical Society, 62(3). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/326

Abstract

In this study, we examined the synthesis, and characterization of TiO2/poly(N-maleoylglycine-co-acrylic acid) (TiO2/poly(MG-co-AA)) nanocomposite. The nanocomposite was prepared by the dispersion of TiO2 nanotubes in a water solution of the polymer (3% w/w) and then it was lyophilized. The nanocomposite was characterized by FTIR and Raman spectroscopies. The incorporation of TiO2 nanotubes to the polymeric matrix was determined by transmission electron microscopy (TEM) from which TiO2 nanotubes in the inner of copolymer with diameters ranging between 90 and 100 nm were observed. The overall morphology of the previously synthetized nanotubes was determined by scanning electron microscopy (SEM). For the nanocomposite system, the morphology was studied by atomic force microscopy (AFM) from which a grain shape structure was observed. This process resulted in a new nanocompsite material with an average grain diameter estimated by SEM and AFM ranging between 210-240 nm. It was observed that the nanotubes were homogeneously dispersed within the polymeric matrix. The prepared material could be suitable in the design of electronic devices and additionally could have potential applications as biomaterial.

References

  1. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Current Opinion Solid State Mater. Sci. 11, 3 (2007).
  2. M. Kapilashrami, Y. Zhang, Y.S. Liu, A. Hagfeldt, J. Guo. Chem. Rev. 114, 9662, (2014).
  3. X. Zhou, N.T. Nguyena, S. Özkan, P Schmuki, Electrochem. Comm. 46, 157, (2014).
  4. H. Li, N. Tang, H. Yang, X. Leng, J. Zou, Aplied Surface Sci. 355, 849, (2015).
  5. C. Wang, D.W. Bahnemann, J.K. Dohrmann, Chem. Commun. 16, 1539, (2000).
  6. Y. Wang, Y. Hao, H. Cheng, H. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 34, 2773, (1999).
  7. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Solar Energy Materials & Solar Cells 90, 2011, (2006).
  8. B.L. Rivas, G. del C. Pizarro, O. Marambio, K. Geckeler, Polym. Bull. 41, 317, (1998).
  9. G. del C. Pizarro, O. Marambio, B.L. Rivas, K. Geckeler, Polym. Bull. 41, 687, (1998).
  10. O. Marambio, J. Sánchez, G. del C. Pizarro, M. Jeria-Orell, B.L. Rivas, Polym. Bull. 65, 701, (2010).
  11. P. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, Z. Song, Chemical Physics Letters 522, 92, (2012).
  12. M. Law, L. Greene, J. Johnson, R. Saykally, Y. Yang, Nature Materials 4, 455, (2005).
  13. C. Chang, Y. Lee, C. Dai, C. Hsiao, S. Chen, N. Nurmalasari, J. Chen, Y. Cheng, W. Shih, P. Chang, Microelectronic Engineering 88, 2236, (2011).
  14. B.H. Chu , J. Lee, C.Y. Chang, P. Jiang, Y. Tseng, S.J. Pearton, A. Gupte, T. Lele, F. Ren, Applied Surface Science 255, 8309 (2009).
  15. G. del C. Pizarro, B. L. Rivas, and K. E. Geckeler, J. Mucromol. Sci. , Pure & Appl. Chem. A34(5), 681, (1997).
  16. D. Oyarzún, R. Córdova, O.E. Linarez Pérez, E. Muñoz, R. Henriquez, M. Lopez Teijelo, H Gomez. J. Solid State Electrochem. 15, 2265, (2011).
  17. S. Umapathy, G. Lee-Son, R. E. Hester, J. Molec. Sctruct. 194, 107, (1989).
  18. D. Oyarzún, O. Linarez Pérez, M. López Teijelo, C. Zúñiga, E. Jeraldo, D. Geraldo, R. Arratia-Perez; Materials Letters 165, 67, (2016).
  19. A. Tello, H. Gómez, E. Muñoz, G. Riveros, C.J. Pereyra, E.A. Dalchiele, R.E. Marotti, Journal of The Electrochemical Society 12, 159, (2012).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP