ELECTRODEPOSITION OF COBALT NANOCLUSTERS FROM AMMONICAL CHLORIDE SOLUTIONS ONTO HOPG ELECTRODES. A KINETICAL AND MORPHOLOGICAL STUDY
- cobalt,
- nanoclusters,
- HOPG,
- kinetics,
- AFM
- MFM ...More
Copyright (c) 2017 Journal of the Chilean Chemical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
A kinetical study about the Co electrodeposition onto Highly Oriented Pyrolytic Graphite electrodes from an aqueous solution containing 0.01 M CoCl2 + 1 M NH4CI (pH = 7) was conducted at overpotential conditions through potentiostatic studies. The entire chronoamperograms were adequately predicted, considering the contribution to the total current of three different processes: a Langmuir-type adsorption process, a three-dimensional nucleation and growth and a proton reduction process. In all cases, the nucleation rate and the number of active nucleation sites are potential dependent. The Atomic Force Microscopy study revealed the presence of homogeneous cobalt clusters of less of 100 nm in height and 50 nm in diameter at different potential values.
References
- M. Ando, T. Kobayashi, S. Iijima, M. Harita, J. Mater.Chem.7, 1779 (1997).
- H. Yamaura, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, J. Electrochem. Soc. 144, L158 (1997).
- P. Nkeng, J. Koening, J. Gautier, P. Chartier, G. Poillerat, J. Electroanal. Chem. 402, 81(1996).
- S. Weichel, P.J. Møller, Surf. Sci. 399, 219 (1998).
- Y. Okamoto, T. Imanaka, S. Teranishi, J. Catal. 65, 448 (1980).
- K. Ramachandram, C.O. Oriakhi, M.M. Lerner, V.R. Koch, Mater. Res. Bull. 31, 767 (1996).
- M.G. Hutchins, P.J. Wright, P.D. Grebenik, Sol. Energ. Mater.16, 113 (1987).
- E. Barrera, I. Gonzales, T. Viveros, Sol. Energ. Mater. Sol. C.51, 69 (1998).
- Y. Gauthier, P. Dolle, R. Boudoing-Savois, W. Hebestrein, E. Platzgummer, M. Schmid, P. Varga, Surf. Sci. 296, 137 (1998).
- E. Lunggren, J. Alvarez, X. Torelles, K.F. Peters, H. Isern, S. Ferrer, Phys. Rev. B59, 2431 (1999).
- E. Platzgummer, M. Sporn, R. Koller, M. Schmid, W. Hofer, P. Varga, Surf. Sci. 453, 214 (2000).
- P. Varga, M. Schmid, Appl. Surf. Sci. 141, 287 (1999).
- F.J. Aden-Broeder, W. Hoving, P.J.H. Bloemen, J. Magn. Magn. Mater.93, 562 (1991).
- L. Smardz, B. Szymanski, R. Gontarz, P. Stefanski, J. Barnas, J. Magn. Magn. Mater.120, 239 (1993).
- K. Spörl, D. Weller, J. Magn. Magn. Mater.93, 379 (1991).
- K. Morgenstern, J. Kibsgaard, J.P. Lauritsen, E. Laegsgaard, F. Besenbacher, Surf. Sci. 601, 1967 (2007).
- E. Napetschnig, M. Schmid, P. Varga, Surf. Sci. 601, 3233, 2007.
- J.S. Pan, R.S. Liu, Z. Zhang, S.W. Poon, W.J. Ong, E.S. Tok, Surf. Sci.600, 1308 (2006).
- S.W. Poon, J.S. Pan, E.S. Tok, Phys. Chem. Chem.Phys.8, 3326 (2006).
- S.A. Koch, R.H. Velde, G. Palasantzas, J.Th.M. De Hosson, Appl.Surf. Sci.226, 185 (2004).
- F. Dumas-Bouchiat, H.S. Nagaraja, F. Rossignol, C. Champeaux, G. Trolliard, A. Catherinot, D.J. Givord, J. Appl. Phys.100, 064304-1 (2006).
- D. Lebedev, N. Nurgazizov, A. Chuklanov, A. Bukharaev, Adv. Nanoparticles 2, 236 (2013).
- H. T. Yang, Y. K. Su, C. M. Shen, T. Z. Yang, H. J. Gao. Surf. Interface Anal. 36, 155 (2004).
- N.A. Resali, App. Mech. Mater. 393, 140 (2013).
- H-Y. Ho, S.-J. Chen, W.-Y. Lin ,Y. Liou, H.-W Cheng, IEEE T. Magn. 48, 3940 (2012).
- P. G. Schiavi, P. Altimari, F. Pagnanelli, E. Moscardini, L. Toro, Chem. Eng. Trans. 43, 673 (2015).
- Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochim. Acta 58, 757 (2011).
- F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P. G. Schiavi, L.Toro, Electrochim. Acta 155, 228 (2015).
- M. Rivera, C.H. Rios-Reyes, L.H. Mendoza-Huizar, Appl. Surf. Sci. 255, 1754 (2008).
- M. Rivera, C.H. Rios-Reyes, L.H. Mendoza-Huizar, J. Magn. Magn. Mater. 323, 997 (2011).
- O. E. Kongstein, G. M. Haarberg, J. Thonstad, J. Appl. Electrochem. 37, 669 (2007).
- Y. Kuo, W. Liao, S.L. Yau, Langmuir, 30, 13890 (2014).
- M. Palomar-Pardave, I. González, A.B. Soto, E.M. Arce, J. Electroanal. Chem. 443, 125 (1998).
- L.H. Mendoza-Huizar, C.H. Rios-Reyes; M. Rivera, Quím. Nova 33(5), 1109 2010.
- D. Grujicic, B. Pesic, Electrochim. Acta, 49, 4719 (2004).
- F. G. Cottrell, Z. Phys. Chem. 42,385 (1902).
- N. Myung, K.H. Ryu, P.T.A. Sumodjo, K. Nobe, Electrochemical Society Proceedings, PV 97-27, p. 136.
- B. Scharifker, G. Hills, Electrochim. Acta 28, 879 (1983).
- L. Heerman, A. Tarallo. Electrochem Commun. 2, 85 (2000).
- C.H. Rios-Reyes,L.H. Mendoza-Huizar, M. Rivera, J. Solid State Electr. 14, 659 (2010).
- H. Holzle, U. Retter, D.M. Kolb, J. Electroanal. Chem.371, 101 (1994).
- M. Palomar-Pardave, B.R. Scharifker, E.M. Arce, M. Romero-Romo, Electrochim. Acta 50, 4736 (2005).
- C.H. Rios-Reyes, M. Granados-Neri, L.H. Mendoza-Huizar, Quím. Nova 32(9) 2382 (2009).
- A.C. Frank, P.T.A. Sumodjo, Electrochim. Acta 132, 75 (2014).
- C. Q. Cui, S.P. Jiang, A.C.C. Tseung, J. Electrochem. Soc. 137, 3418 (1990).
- M. Palomar-Pardavéa, B.R. Scharifker, E.M. Arce, M. Romero-Romo, Electrochim. Acta, 50(24) 4736 (2005).
- D.G. Leaist, Can. J. Chem. 62, 1692 (1984).
- A. Milchev, S. Stoyanov, R. Kaischev, Thin Solid Films 22, 255 (1974).
- A. Milchev, Contemp. Physics 32, 321 (1991).
- A. Milchev,”Electrocrystallization: Fundamentals of nucleation and growth, ch. 2.2.3,” Kluwer Academic Publishers: Massachusetts, (2002).
- M. Noel, K. Vasu, “Cyclic Voltammetry and the Frontiers of Electrochemistry (Chapter 7)”, Aspect, London (1990).
- 44. B.R. Scharifker, Acta Cient. Venez. 35, 211 (1984).