ZINC OXIDE NANOPARTICLES AS ADDITIVE TO ENHANCE THE SOLID-STATE EMISSION OF A HETEROLEPTIC Cu(I) COMPLEX

- ZnO nanoparticles,
- enhanced emission,
- Heteroleptic Cu(I) complex,
- solid state emission,
- precipitation synthesis
Copyright (c) 2025 SChQ

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
The synthesis and characterization of Zinc Oxide Nanoparticles (ZnO NPs) is reported at 0°C and room temperature, with 1–octadecanol, zinc acetate and lithium hydroxide. The ZnO structural and electronic nature was confirmed by Transmission Electron Microscopy, powder X-Ray Diffraction and UV-Vis absorption. NPs exhibited diameters within 8 – 13 nm and ellipsoidal morphology.
The synergism between the ZnO NPs on the luminescent response of a Cu(I) complex in solid-state by stacking layers on a glass substrate was evaluated. Main results show that the complex increases emission response by 2.45 compared to the absence of the ZnO NPs layer. This behaviour could be interpreted by a possible energy transfer due to the interaction between the optical band gap of ZnO NPs semiconductor with the emitting Cu(I) complex. Despite the observed behavior appears as preliminary results (a systematic study of each coating layers must be clarified), the observed luminescent response on the coated glass was consistent with the large emissive response due to the interacting ZnO NPs with the heteroleptic Cu(I) complex. These results appear as outstanding to the future performance hybrid material using nanomaterials to enhance the luminescence of non-expensive metal for optical applications.
References
- a) K. Davis, R. Yarbrough, M. Froeschle, J. White and H. Rathnayake, RSC Advances 2019, 9, 14638-14648; b) M. Carofiglio, S. Barui, V. Cauda and M. Laurenti, Applied Sciences 2020, 10, 5194.
- a) Y. F. Zhu and W. Z. Shen, Applied Surface Science 2010, 256, 7472-7477; b) A. Moballegh, H. R. Shahverdi, R. Aghababazadeh and A. R. Mirhabibi, Surface Science 2007, 601, 2850-2854.
- T. Vu Anh, T. A. T. Pham, V. H. Mac and T. H. Nguyen, Journal of Analytical Methods in Chemistry 2021, 2021, 5533734.
- N. Bano, I. Hussain, S. Aodah and M. S. AlSalhi, Materials Research Express 2019, 6, 115629.
- M. Manikandan, P. Rajagopalan, N. Patra, S. Jayachandran, M. Muralidharan, S. S. Mani Prabu, I. A. Palani and V. Singh, Nanotechnology 2020, 31, 185401.
- M. A. Subhan, P. C. Saha, M. M. Alam, A. M. Asiri, M. Al-Mamun and M. M. Rahman, Journal of Environmental Chemical Engineering 2018, 6, 1396-1403.
- M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama and J.-L. Cortina, Chemical Engineering Journal 2020, 391, 123475.
- Z. Xu, L. Zheng, S. Wen and L. Liu, Composites Part A: Applied Science and Manufacturing 2019, 124, 105492.
- E. A. S. Dimapilis, C.-S. Hsu, R. M. O. Mendoza and M.-C. Lu, Sustainable Environment Research 2018, 28, 47-56.
- a) Y. Lv, W. Xiao, W. Li, J. Xue and J. Ding, Nanotechnology 2013, 24, 175702; b) A. Moezzi, A. McDonagh, A. Dowd and M. Cortie, Inorganic Chemistry 2013, 52, 95-102; c) M. N. Shamhari, S. B. Wee, F. S. Chin and Y. K. Kok, Acta chimica Slovenica 2018, 65 3, 578-585; d) R. K. Sharma and R. Ghose, Ceramics International 2015, 41, 967-975.
- a) V. Koutu, L. Shastri and M. M. Malik, Materials Science-Poland 2016, 34, 819-827; b) K.-K. Liu, C.-X. Shan, R. Zhou, Q. Zhao and D.-Z. Shen, Optical Materials Express 2017, 7, 2682-2690.
- S. Gyawali, L. K. M. O. Goni, M. S. Chowdhury, A. Laref, S. Bajgai, S. Chantrapromma and K. Techato, Materials Research Express 2022, 9, 055004.
- Q. R. Hu, S. L. Wang and W. H. Tang, Materials Letters 2010, 64, 1822-1824.
- M. Makkar and H. S. Bhatti, Chemical Physics Letters 2011, 507, 122-127.
- A. Sharma, B. P. Singh, S. Dhar, A. Gondorf and M. Spasova, Surface Science 2012, 606, L13-L17.
- a) Y. Im, S. Kang, B. S. Kwak, K. S. Park, T. W. Cho, J.-S. Lee and M. Kang, Korean Journal of Chemical Engineering 2016, 33, 1447-1455; b) W. Widiyastuti, S. Machmudah, T. Nurtono, S. Winardi, R. Balgis, T. Ogi and K. Okuyama, Chemical Engineering Transactions 2017, 56, 955-960.
- a) F. Brunner, L. Martínez-Sarti, S. Keller, A. Pertegás, A. Prescimone, E. C. Constable, H. J. Bolink and C. E. Housecroft, Dalton Transactions 2016, 45, 15180-15192; b) M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson and H. Yersin, Journal of the American Chemical Society 2014, 136, 16032-16038; c) S. Keller, F. Brunner, J. M. Junquera-Hernández, A. Pertegás, M.-G. La-Placa, A. Prescimone, E. C. Constable, H. J. Bolink, E. Ortí and C. E. Housecroft, ChemPlusChem 2018, 83, 217-229.
- a) A. O. Razgoniaev, C. E. McCusker, F. N. Castellano and A. D. Ostrowski, ACS Macro Letters 2017, 6, 920-924; b) A. Singh, A. Singh, N. Singh and D. O. Jang, Sensors and Actuators B: Chemical 2017, 243, 372-379.
- V. Gandin, C. Ceresa, G. Esposito, S. Indraccolo, M. Porchia, F. Tisato, C. Santini, M. Pellei and C. Marzano, Scientific Reports 2017, 7, 13936.
- a) M. W. Mara, K. A. Fransted and L. X. Chen, Coordination Chemistry Reviews 2015, 282-283, 2-18; b) Y. Zhang, M. Schulz, M. Wächtler, M. Karnahl and B. Dietzek, Coordination Chemistry Reviews 2018, 356, 127-146; c) C. Minozzi, A. Caron, J.-C. Grenier-Petel, J. Santandrea and S. K. Collins, Angewandte Chemie International Edition 2018, 57, 5477-5481; d) J. Kim, D. R. Whang and S. Y. Park, ChemSusChem 2017, 10, 1883-1886.
- M. D. Marcantonio, S. Gellner, J. E. Namanga, J. Frohleiks, N. Gerlitzki, F. Vollkommer, G. Bacher and E. Nannen, Advanced Materials Technologies 2017, 2, 1600215.
- a) I. Hiromitsu, T. Ikeue, K. Karino, T. Ohno, S. Tanaka, H. Shiratori, S. Morito, Y. Fujita and M. Handa, Chemical Physics Letters 2009, 474, 315-319; b) I. Hiromitsu, A. Kawami, S. Tanaka, S. Morito, R. Sasai, T. Ikeue, Y. Fujita and M. Handa, Chemical Physics Letters 2011, 501, 385-389.
- S. M. B. Aly, M. Eita, J. I. Khan, E. Alarousu and O. F. Mohammed, The Journal of Physical Chemistry C 2014, 118, 12154-12161.
- N. Armaroli, G. Accorsi, M. Holler, O. Moudam, J.-F. Nierengarten, Z. Zhou, R. T. Wegh and R. Welter, Advanced Materials 2006, 18, 1313-1316.
- a) S. Daumann, D. Andrzejewski, M. Di Marcantonio, U. Hagemann, S. Wepfer, F. Vollkommer, G. Bacher, M. Epple and E. Nannen, Journal of Materials Chemistry C 2017, 5, 2344-2351; b) D. P. Singh, Science of Advanced Materials 2010, 2, 245-272.
- D. Kumar and S. Pal, AIP Conference Proceedings 2019, 2142.
- H.-M. Xiong, R.-Z. Ma, S.-F. Wang and Y.-Y. Xia, Journal of Materials Chemistry 2011, 21, 3178-3182.
- G. Rajendran, S. P. Datta, R. D. Singh, S. C. Datta and M. Vakada, Inorganic and Nano-Metal Chemistry 2022, 52, 185-194.
- Chinese Journal of Chemical Physics 2012, 25, 719.
- E. A. Meulenkamp, The Journal of Physical Chemistry B 1998, 102, 5566-5572.
- S. Mustapha, M. M. Ndamitso, A. S. Abdulkareem, J. O. Tijani, D. T. Shuaib, A. K. Mohammed and A. Sumaila, Advances in Natural Sciences: Nanoscience and Nanotechnology 2019, 10, 045013.
- H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R. K. Mishra, D. Marchon, R. J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya and R. F. Ziolo, Surface Science Reports 2017, 72, 1-58.
- M. Saleem, A. Manzoor, M. Zaffar, S. Z. Hussain and M. S. Anwar, Applied Physics A 2016, 122, 589.
- O. Bundit and K. Wongsaprom, Journal of Physics: Conference Series 2018, 1144, 012044.
- P. A. Rodnyi and I. V. Khodyuk, Optics and Spectroscopy 2011, 111, 776-785.
- S. S. Kumar, P. Venkateswarlu, V. R. Rao and G. N. Rao, International Nano Letters 2013, 3, 30.
- L.-l. Chen, B.-g. Zhai and Y. M. Huang, Catalysts 2020, 10, 1163.
- Y. Liu, S.-C. Yiu, C.-L. Ho and W.-Y. Wong, Coordination Chemistry Reviews 2018, 375, 514-557.
- M. Santander-Nelli, L. Sanhueza, D. Navas, E. Rossin, M. Natali and P. Dreyse, New Journal of Chemistry 2022, 46, 1693-1703.
- H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, Advanced Functional Materials 2010, 20, 561-572.
- a) S.-Y. Pung, K.-L. Choy, X. Hou and C. Shan, Nanotechnology 2008, 19, 435609; b) V. Myndrul, L. Vysloužilová, A. Klápšťová, E. Coy, M. Jancelewicz and I. Iatsunskyi, Coatings 2020, 10, 1199; c) P. Boryło, K. Matus, K. Lukaszkowicz, J. Kubacki, K. Balin, M. Basiaga, M. Szindler and J. Mikuła, Applied Surface Science 2019, 474, 177-186; d) R. Kumar, G. Kumar, O. Al-Dossary and A. Umar, Materials Express 2015, 5, 3-23.