JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 70 No 2 (2025): Journal of The Chilean Chemical Society
Original Research Papers

ENHANCED ELECTROACTIVE ARTIFICIAL MUSCLE USING CNFS/IONIC LIQUID IN A PVDF(HFP) POLYMER GEL: A LOW-COST ALTERNATIVE TO CNT-BASED ACTUATORS

P. Salgado-Figueroa
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
C. Jullian
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
J.D. Mozo
CCTH, Centro Científico y Tecnológico de Huelva, Facultad de Ciencias Experimentales, Universidad de Huelva
F. Pavez-Cabezas
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Published October 6, 2025
Keywords
  • Electroactive Artificial Muscle,
  • Electrochemical Actuator,
  • Carbon Nanofiber,
  • Ionic Liquid,
  • PVdF(HFP),
  • Electroactive Polymers
  • ...More
    Less
How to Cite
Salgado Figueroa, P. J., Jullian, C., Mozo, J. D., & Pavez , F. (2025). ENHANCED ELECTROACTIVE ARTIFICIAL MUSCLE USING CNFS/IONIC LIQUID IN A PVDF(HFP) POLYMER GEL: A LOW-COST ALTERNATIVE TO CNT-BASED ACTUATORS. Journal of the Chilean Chemical Society, 70(2), 6320-6325. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2789

Abstract

This study presents the development and characterization of two electroactive actuators, ACT-L1 and ACT-L2, based on carbon nanofibers (CNFs) and two different ionic liquids: EMIBF4 (L1) and EMIN[(CN)2] (L2). The actuators were designed in a three-layer configuration and characterized using SEM, AFM, FT-IR, IEC, and Young’s modulus analysis.
SEM and AFM images revealed that electrode layers with L2 exhibited spherical grains and increased roughness, while FT-IR confirmed modifications in the polymer’s crystalline structure due to CNFs and ionic liquid incorporation. The electrolyte films exhibited similar chemical and mechanical properties regardless of the ionic liquid used, except for roughness.
Performance evaluation demonstrated that both actuators showed stable and reproducible movement under a ±2.0 V voltage window. However, ACT-L1 achieved a maximum displacement of 400 µm, significantly outperforming ACT-L2 (17 µm), likely due to morphological differences in the electrolyte surface. The strain generated by ACT-L1 under ±2.0 V and 0.1 Hz was comparable to previously reported multiwalled carbon nanotube (MWCNT) actuators.
These results suggest that CNF-based actuators offer a promising and cost-effective alternative to CNT-based artificial muscles for applications in robotics, biomedical devices, and other fields.

 

27891.png

References

  1. Vohrer, U.; Kolaric, I.; Haque, M. H.; Roth, S.; (Sobhan Sharafkhani, 2021) Detlaff-Weglikowska, U. Carbon N. Y, 2004, 42, 1159–1164, doi:10.1016/j.carbon.2003.12.044.
  2. Mahanty, B.; Maity, K.; Sarkar, S.; Mandal, D. Mater. Today Proc. 2020, 21, 1964–1968, doi:10.1016/j.matpr.2020.01.282.
  3. Fraysse, J.; Minett, A. I.; Jaschinski, O.; Duesberg, G. S.; Roth, S. Carbon N. Y. 2002, 40, 1735–1739, doi:10.1016/S0008-6223(02)00041-6.
  4. Kwon, K. S.; Ng, T. N. Org. Electron. physics, Mater. Appl. 2014, 15, 294–298, doi:10.1016/j.orgel.2013.11.026.
  5. Lee, B. K.; Park, S. J.; Kim, D. S. Curr. Appl. Phys. 2013, 13, 1520–1524, doi:10.1016/j.cap.2013.05.011.
  6. Prasad, B.; Gill, F. S.; Panwar, V.; Anoop, G. Compos. Part B Eng. 2019, 173, 106990, doi:10.1016/j.compositesb.2019.106990.
  7. Park C-L.; Goh B.; Kim E.; Choi J.; Kim S., Carbon, Volume 220, 20 February 2024, 118775, https://doi.org/10.1016/j.carbon.2023.118775
  8. Terasawa, N.; Ono, N.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. Carbon N. Y. 2012, 50, 311–320, doi:10.1016/j.carbon.2011.08.072.
  9. Chen, I.-W. P.; Cottinet, P.-J.; Tsai, S.-Y.; Foster, B.; Liang, R.; Wang, B.; Zhang, C. Sensors Actuators B Chem. 2012, 171–172, 515–521, doi:10.1016/j.snb.2012.05.022.
  10. Takeuchi, I.; Asaka, K.; Kiyohara, K.; Sugino, T.; Terasawa, N.; Mukai, K.; Fukushima, T.; Aida, T. Electrochim. Acta, 2009, 54, 1762–1768, doi:10.1016/j.electacta.2008.10.007.
  11. Biso, M.; Ansaldo, A.; Picardo, E.; Ricci, D. Carbon N. Y., 2012, 50, 4506–4511, doi:10.1016/j.carbon.2012.05.032.
  12. Terasawa, N.; Takeuchi, I.; Matsumoto, H. Sensors Actuators, B Chem. 2009, 139, 624–630, doi:10.1016/j.snb.2009.03.057.
  13. Mukai, K.; Asaka, K.; Kiyohara, K.; Sugino, T.; Takeuchi, I.; Fukushima, T.; Aida, T. Electrochim. Acta, 2008, 53, 5555–5562, doi:10.1016/j.electacta.2008.02.113.
  14. Sugino, T.; Kiyohara, K.; Takeuchi, I.; Mukai, K.; Asaka, K. Sensors Actuators, B Chem. 2009, 141, 179–186, doi:10.1016/j.snb.2009.06.002.
  15. Sobhan Sharafkhani, M, K 2021, 10 (9060).
  16. Terasawa, N.; Takeuchi, I. Electrochim. Acta, 2014, 123, 340–345, doi:10.1016/j.electacta.2013.12.156.
  17. Jung, J. H.; Vadahanambi, S.; Oh, I. K. Compos. Sci. Technol, 2010, 70, 584–592, doi:10.1016/j.compscitech.2009.12.007.
  18. Jung, J. H.; Jeon, J. H.; Sridhar, V.; Oh, I. K. Carbon N. Y. 2011, 49, 1279–1289, doi:10.1016/j.carbon, 2010, 11.047.
  19. Łuczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 329, 125–133, doi:10.1016/j.colsurfa.2008.07.012.
  20. Shiddiky, M. J. A.; Torriero, A. A. J. Biosens. Bioelectron. 2011, 26, 1775–1787, doi:10.1016/j.bios.2010.08.064.
  21. Yuan, C.; Su, L.; Yang, K.; Li, Z.; Cheng, X.; Wang, Y.; Li, L. Colloid Polym. Sci. 2015, 293, 925–932, doi:10.1007/s00396-014-3466-7.
  22. Wu, Y. S.; Yang, C. C.; Luo, S. P.; Chen, Y. L.; Wei, C. N.; Lue, S. J. Int. J. Hydrogen Energy 2017, 42, 6862–6875, doi:10.1016/j.ijhydene.2016.11.201.
  23. Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K. Sensors Actuators, B Chem. 2015, 221, 635–643, doi:10.1016/j.snb.2015.06.145.
  24. Kabir, E.; Khatun, M.; Nasrin, L.; Raihan, M. J.; Rahman, M. J. Phys. D. Appl. Phys., doi:10.1088/1361-6463/aa5f85.
  25. Gong W.; Yang W.; Fu F.; Nano Energy 2024, 131, 110277.
  26. Wu, C. G.; Lu, M. I.; Chuang, H. J. Polymer (Guildf). 2005, 46, 5929–5938, doi:10.1016/j.polymer.2005.05.077.
  27. Wang, J.; Zheng, L.; Wu, Z.; Zhang, Y.; Zhang, X. J. Memb. Sci. 2016, 497, 183–193, doi:10.1016/j.memsci.2015.09.024.
  28. Sil, A.; Sharma, R.; Ray, S. Surf. Coatings Technol. 2015, 271, 201–206, doi:10.1016/j.surfcoat.2014.12.036.
  29. Minett, A.; Fràysse, J.; Gang, G.; Kim, G.-T.; Roth, S. Curr. Appl. Phys. 2002, 2, 61–64, doi:10.1016/S1567-1739(01)00100-6.
  30. Canning, J.; Bandyopadhyay, S.; Biswas, P.; Aslund, M. World’s largest Science, Technology & Medicine Open Access book publisher., doi:10.5772/50570.
  31. Spasova, M.; Manolova, N.; Markova, N.; Rashkov, I. Appl. Surf. Sci. 2016, 363, 363–371, doi:10.1016/j.apsusc.2015.12.049.
  32. Soroush Soltani, N. K. 2022, 12, 6111.
  33. Huang, H.; Chen, B.; Wu, J.; Wang, Y.; Shen, Z.; Li, L.; Wang, Y.; Wang, Y.; Li, X. Mater. Today Commun. 2022, 103052, https://doi.org/10.1016/j.mtcomm.2021.103052.
  34. Keshavarz, S.; Okoro, O.; Hamidi, M. Coord. Chem. Rev. 2022, 472, 214770, https://doi.org/10.1016/j.ccr.2022.214770.
  35. Zhao, Z.; Zheng, W.; Yu, W.; Long, B. Carbon N. Y. 2009, 47, 2118–2120, doi:10.1016/j.carbon.2009.03.043.
  36. Jin, Z.; Pramoda, K. P.; Goh, S. H.; Xu, G. Compos. Mater. Res. Bull. 2002, 37, 271–278, doi:10.1016/S0025-5408(01)00775-9.
  37. Zhang, S.; Kumar, S. Macromol. Rapid Commun. 2008, 29, 557–561.
  38. Saikia, D.; Kumar, A. I. Electrochim. Acta 2004, 49, 2581–2589, doi:10.1016/j.electacta.2004.01.029.
  39. Terasawa, N.; Ono, N.; Hayakawa, Y.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. Sensors Actuators, B Chem. 2011, 160, 161–167, doi:10.1016/j.snb.2011.07.027.
  40. Terasawa, N.; Ono, N.; Mukai, K.; Koga, T.; Higashi, N.; Asaka, K. Sensors Actuators, B Chem. 2012, 163, 20–28, doi:10.1016/j.snb.2011.11.065.
  41. Terasawa, N.; Asaka, K. RSC Adv. 2016, 6, 66360–66367, doi:10.1039/C6RA08676D.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP