POLYLACTIC ACID (PLA) SCAFFOLD FOR CONTROLLED RELEASE OF ESSENTIAL OIL OF CANELO DRIMYS WINTERI: CONTROL OF PHYTOPATHOGENS IN FRUITS

- Canelo (Drimys winteri) essential oil,
- PLA support,
- non-contact antimicrobial activity,
- Botrytis cinerea
Copyright (c) 2024 SChQ

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
We have designed and prepared polylactic acid (PLA)-based porous support for the controlled release of essential oils from Drimys winteri, common name Canelo (CEO). The chemical composition of the essential oil was characterized by HS/GC-MS. The interaction with the PLA-based porous support was determined by FTIR-ATR spectrophotometry. Our results showed that the manufactured PLA support allows the controlled release of essential oils over time, at 21 °C. The PLA/essential oil support showed a non-contact antifungal activity against B. cinerea. In addition, pure compounds (standards) detected in the gas phase of CEO essential oil were independently studied to identify which of these molecules is responsible for the growth control action of the fungus. In conclusion, the PLA/CEO porous support is an alternative to protect against infections such as B. cinerea, offering a potential use of this strategy to preserve fresh functional foods in the post-harvest stage, as an atmosphere modifier.
References
- Joseph, T. M., Kallingal, A., Suresh, A. M., Mahapatra, D. K., Hasanin, M.
- S., Haponiuk, J., & Thomas, S. (2023). International Journal, Advanced
- Manufacturing Technology, 125(3-4), 1015.
- Zhong, Y., Chen, Y., & Geng, Q. (2024). J. Phys. Conf. Ser., 2713(1), 012017.
- Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2024). Biomass Convers.
- Biorefin., 14(3), 3057–3076.
- Mahtabi, R., Benisi, S. Z., Goodarzi, V., & Shojaei, S. (2024). J. Polym.
- Environ., 32(2), 548–559.
- Qin, Y., Li, W., Liu, D., Yuan, M., & Li, L. (2017). Prog. Org. Coat., 103, 76–
- Nasution, H., Harahap, H., Julianti, E., Safitri, A., & Jaafar, M. (2023).
- Polymers, 15(20).
- Andrade, M. A., Barbosa, C. H., Cerqueira, M. A., Azevedo, A. G., Barros,
- C., Machado, A. V., ...Ramos, F. (2023). Food Packaging and Shelf Life, 36,
- Moreno-Serna, V., Oyarzún, C., Ulloa-Flores, M. T., Rivas, L., Sepúlveda, F.
- A., Loyo, C., Zapata, P. A. (2023). ACS Sustainable Chem. Eng., 11(29),
- –10766.
- Valamvanos, T.-F., Dereka, X., Katifelis, H., Gazouli, M., & Lagopati, N.
- (2024). Biomimetics, 9(3).
- Grenier, J., Duval, H., Barou, F., Lv,P., David, B., & Letourneur, D. (2019).
- Acta Biomater., 94, 195–203.
- Judawisastra, H., Nugraha, F. R., & Wibowo, U. A. (2020). Macromol.
- Symp., 391(1), 1900187.
- Pant, S., Vijayaraghavan, R., Loganathan, S., & Valapa, R. B. (2024). Mater.
- Today Chem., 40, 102246.
- Santoro, M., Shah, S. R., Walker, J. L., & Mikos, A. G. (2016). Adv. Drug
- Delivery Rev., 107, 206–212.
- Lee, H., Shin, D. Y., Bang, S.-J., Han, G., Na, Y., Kang, H. S., ...Kang, M.-
- H. (2024). Int. J. Biol. Macromol., 254, 127797.
- Cha, M., Jin, Y.-Z., Park, J. W., Lee, K. M., Han, S. H., Choi, B. S., & Lee,
- J. H. (2021). Biomaterials Research, 25(1).
- Senatov, F. S., Niaza, K. V., Zadorozhnyy, M. Yu., Maksimkin, A. V.,
- Kaloshkin, S. D., & Estrin, Y. Z. (2016). J. Mech. Behav. Biomed. Mater.,
- , 139–148.
- Christova, P. K., Dobreva, A. M., Dzhurmanski, A. G., Dincheva, I. N.,
- Dimkova, S. D., & Zapryanova, N. G. (2024). Life, 14(7), 817.
- Kaya, O., Karakus, S., Bozkurt, A., Yilmaz, T., Hajizadeh, H. S., & Turan,
- M. (2024). Chem. Biol. Technol. Agric., 11(1), 1–17.
- Wang, Z., Wang, H., Wang, C., & Niu, X. (2025). Food Chem., 464, 141680.
- Niu, X., Wang, H., Zhou, Q., Pan, K., & Liu, L. (2024). Composite
- Nanomaterials.
- El Omari, N., Chamkhi, I., Balahbib, A., Benali, T., Akhazzane, M., Ullah,
- R., Bouyahya, A. (2024). Biochem. Syst. Ecol., 116, 104875.
- Janarthanan, G., Tran, H. N., Cha, E., Lee, C., Das, D., & Noh, I. (2020).
- Mater. Sci. Eng., C, 113, 111008.
- Naidu, B. V. K., & Paulson, A. T. (2011). J. Appl. Polym. Sci., 121(6), 3495–
- Liu, R., Zhang, L., Xiao, S., Chen, H., Han, Y., Niu, B., Gao, H. (2023). Food
- Chem., 415.
- Fincheira, P., Jofré, I., Espinoza, J., Levío-Raimán, M., Tortella, G., Oliveira,
- H. C., ...Rubilar, O. (2023). Microbiol. Res., 277, 127486.
- Tian, J., Wang, Y., Zeng, H., Li, Z., Zhang, P., Tessema, A., & Peng, X.
- (2015). Int. J. Food Microbiol., 202, 27–34.
- Janarthanan, G., Pillai, M. M., Sahanand, S., Selvakumar, R., &
- Bhattacharyya, A. (2020). Polym. Bull., 77(12).
- Álvarez-Méndez, S. J., Ramos-Suárez, J. L., Ritter, A., Mata González, J., &
- Camacho Pérez, Á. (2023). Heliyon, 9(6), e16691.
- Zuo, M., Jiang, Z., Guo, L., Dong, F., & Xu, X. (2019). ACS Omega, 4(7),
- –11927.
- Martins, G. A., & Bicas, J. L. (2024). Braz. J. Food Technol., 27, e2023071.