JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 69 No 1 (2024): JCChemS
Original Research Papers

FIRST REPORT ON THE BIOLOGICAL ACTIVITIES, MOLECULAR DOCKING AND STUDY OF THE TOXICITY OF TWO OLEORESINS AS WELL AS THEIR MAIN CONSTITUENTS

Meriem Elkolli
Laboratory of applied microbiology
Hayet Elkolli
Laboratory of multiphase polymeric materials
Bio
Yacine Benguerba
Department of Process Engineering
Bio
Published October 6, 2024
Keywords
  • Biological activities,
  • molecular docking,
  • Myrrh,
  • Pharmacokinetics,,
  • Pine resin,
  • Toxicity.
  • ...More
    Less
How to Cite
Elkolli, M., Elkolli, H., & Benguerba, Y. (2024). FIRST REPORT ON THE BIOLOGICAL ACTIVITIES, MOLECULAR DOCKING AND STUDY OF THE TOXICITY OF TWO OLEORESINS AS WELL AS THEIR MAIN CONSTITUENTS. Journal of the Chilean Chemical Society, 69(1), 6042-6053. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2693

Abstract

The objective of this work was to evaluate the in vitro and in silico antibacterial, anti-inflammatory and antioxidant activities of two oleoresins; Myrrh and Pine resin used in the Algerian traditional pharmacopoeia. The antibacterial effect of oleoresins was evaluated by the agar diffusion test against three bacterial strains; E. coli (ATCC 25922), S. aureus (ATCC 25923) and P. aeuroginosa (ATCC 27853). The antioxidant activity was assessed using DPPH method and the protein inhibition denaturation test was used to evaluate the anti-inflammatory efficacy. Resins main compounds were docked in silico against the bacterial tyrosyl-tRNA synthetase using the Autodock Tools 1.5.7 software. This study was carried out to determine their modes of binding with the active residues of this molecular target enzyme of antimicrobial agents. Molinspiration Cheminformatics and SwissADME online tools were used to predict physicochemical and pharmacokinetic parameters while OSIRIS Property Explorer online tools were used to predict toxicity risks. The results show that the Myrrh was effective against E. coli and S. aureus (17 mm) and that the Pine resin was similarly effective against E. coli (11 mm) and S. aureus (10 mm), but P. aeruginosa was completely resistant. The antioxidant test showed that both oleoresins had considerable ability to reduce the DPPH, with good IC50 of 0.49 ± 0.13 and 0.53 ± 0.06 mg/ml, respectively, compared to the BHT (0.89 ± 0.45 mg/ml). Both oleoresins had a remarkable anti-denaturation effects. The data of in silico studies revealed that all phytocompounds fit into the active pocket of the target enzyme and the binding energies ranged between -10.06 (Dehydroabietic acid) and -4.3 kcal/mol (D-glucuronic acid). The toxic and pharmacokinetic characteristics are, mostly, satisfying except for some compounds which have shown toxic effects, in particular Limonene, 4-allylanisole and Vanillin. We conclude that the extracts and their primary phytocompounds can enhance the antibacterial, antioxidant, and anti-inflammatory existing drugs without side effects.

 

2693.jpg

References

  1. M. Zaynab, M. Fatima, S. Abbas, Y. Sharif, M. Umair, M. H. Zafar, K. Bahadar, Microb. Pathog. 124 (2018) 198–202. https://doi.org/10.1016/j.micpath.2018.08.034
  2. K. Rajashri, S. Mudhol, M. Serva Peddha, B. B. Borse, ACS Omega 5 (2020) 30898–30905. https://doi.org/10.1021/acsomega.0c03689
  3. F. Abrão, T. S. Silva, C. L. Moura, S. R. Ambrósio, R. C. S. Veneziani, R. E. F. de Paiva, J. K. Bastos, C. H. G. Martins, Sci. Rep. 11 (2021) 4953. https://doi.org/10.1038/s41598-021-84480-7
  4. M. Rubini, A. Clopeau, J. Sandak, S. Dumarcay, A. Sandak, P. Gerardin, B. Charrier, Biocatal. Agric. Biotechnol. 42 (2022) 102340. https://doi.org/10.1016/j.bcab.2022.102340
  5. C. Arrabal, M. Cortijo, B. F. de Simón, M. C. García Vallejo, E. Cadahía, Biochem. Syst. Ecol. 33 (2005) 1007–1016. https://doi.org/10.1016/j.bse.2005.03.003
  6. F. R. Procopio, M. C. Ferraz, B. N. Paulino, P. J. do Amaral Sobral, M. D. Hubinger, Trends Food Sci. Technol. 122 (2022) 123–139. https://doi.org/10.1016/j.tifs.2022.02.010
  7. E. Bolskis, E. Adomavičiūtė, E. Griškonis, V. Norvydas, Materials 13 (2020) 3824. https://doi.org/10.3390/ma13173824
  8. N. S. Younis, M. E. Mohamed, J. Ethnopharmacol. 270 (2021) 113793. https://doi.org/10.1016/j.jep.2021.113793
  9. M. A. Lebda, R. E. Mostafa, N. M. Taha, E. M. Abd El-Maksoud, H. G. Tohamy, S. K. Al Jaouni, A. H. El-Far, M. S. Elfeky, Antioxidants 10 (2021) 1836. https://doi.org/10.3390/antiox10111836
  10. H. N. Murthy, ed., Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses, Springer International Publishing, Cham, 2022. https://doi.org/10.1007/978-3-030-91378-6
  11. A. S. Alqahtani, R. N. Herqash, O. M. Noman, Md. Tabish Rehman, A. A. Shahat, M. F. Alajmi, F. A. Nasr, J. Anal. Methods Chem. 2021 (2021) 1–10. https://doi.org/10.1155/2021/5525173
  12. Z. Alehaideb, G. Alatar, A. Nehdi, A. Albaz, H. Al-Eidi, M. Almutairi, E. Hawsa, N. Alshuail, S. Matou-Nasri, Saudi Pharm. J. 29 (2021) 361–368. https://doi.org/10.1016/j.jsps.2021.03.002
  13. B. Cao, X.-C. Wei, X.-R. Xu, H.-Z. Zhang, C.-H. Luo, B. Feng, R.-C. Xu, S.-Y. Zhao, X.-J. Du, L. Han, D.-K. Zhang, Molecules 24 (2019) 3076. https://doi.org/10.3390/molecules24173076
  14. O. Ajiteru, O. J. Lee, J.-H. Kim, Y. J. Lee, J. S. Lee, H. Lee, Md. T. Sultan, C. H. Park, Colloid Interface Sci. Commun. 48 (2022) 100617. https://doi.org/10.1016/j.colcom.2022.100617
  15. H. Derdar, G. R. Mitchell, V. S. Mahendra, M. Benachour, S. Haoue, Z. Cherifi, K. Bachari, A. Harrane, R. Meghabar, Polymers 12 (2020) 1971. https://doi.org/10.3390/polym12091971
  16. N. Kadri, B. Khettal, Y. Aid, S. Kherfellah, W. Sobhi, V. Barragan-Montero, Food Chem. 188 (2015) 184–192. https://doi.org/10.1016/j.foodchem.2015.04.138
  17. N. Boulâacheb, Acta Hortic. (2010) 435–438. https://doi.org/10.17660/ActaHortic.2010.853.53
  18. A. P. Acosta, K. T. Barbosa, S. C. Amico, A. L. Missio, R. de Avila Delucis, D. A. Gatto, Ind. Crops Prod. 166 (2021) 113495. https://doi.org/10.1016/j.indcrop.2021.113495
  19. N. Garcia-Forner, F. Campelo, A. Carvalho, J. Vieira, A. Rodríguez-Pereiras, M. Ribeiro, A. Salgueiro, M. E. Silva, J. L. Louzada, For. Ecol. Manag. 496 (2021) 119406. https://doi.org/10.1016/j.foreco.2021.119406
  20. Z. Yaniv, Medicinal and aromatic plants of the Middle-East, Springer, New York, 2014.
  21. J. Y. Park, Y. K. Lee, D.-S. Lee, J.-E. Yoo, M.-S. Shin, N. Yamabe, S.-N. Kim, S. Lee, K. H. Kim, H.-J. Lee, S. S. Roh, K. S. Kang, J. Ethnopharmacol. 203 (2017) 279–287. https://doi.org/10.1016/j.jep.2017.03.055
  22. M. Skupińska, P. Stępniak, I. Łętowska, L. Rychlewski, M. Barciszewska, J. Barciszewski, M. Giel-Pietraszuk, Microb. Drug Resist. 23 (2017) 308–320. https://doi.org/10.1089/mdr.2015.0272
  23. C. A. Hughes, V. Gorabi, Y. Escamilla, F. B. Dean, J. M. Bullard, SLAS Discov. 25 (2020) 1072–1086. https://doi.org/10.1177/2472555220934793
  24. G. Bouz, J. Zitko, Bioorganic Chem. 110 (2021) 104806. https://doi.org/10.1016/j.bioorg.2021.104806
  25. EUCAST, (2022). Antimicrobial susceptibility testing The European Committee on Antimicrobial Susceptibility Testing.https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2022_manuals/Manual_v_10.0_EUCAST_Disk_Test_2022.pdf.
  26. G. Singh, P. Marimuthu, C. S. de Heluani, C. A. N. Catalan, J. Agric. Food Chem. 54 (2006) 174–181. https://doi.org/10.1021/jf0518610
  27. Reshma, P. BRINDHA, ARUN KP, 7 (2014) 9.
  28. L. O. Hanuš, T. Řezanka, V. M. Dembitsky, A. Moussaieff, Biomed. Pap. 149 (2005) 3–28. https://doi.org/10.5507/bp.2005.001
  29. N. S. Al-Radadi, Saudi Pharm. J. (2022) S1319016422001852. https://doi.org/10.1016/j.jsps.2022.06.028
  30. J. Ulrich, S. Stiltz, A. St-Gelais, M. El Gaafary, T. Simmet, T. Syrovets, M. Schmiech, Molecules 27 (2022) 3903. https://doi.org/10.3390/molecules27123903
  31. M. M. Zerroug, N. Haichour, S. Mezaache Aichour, E. Soltani, S. Kada, J. R. Martinez, M. Angeles Esteban, J. Nicklin, J. Microbiol. Biotechnol. Food Sci. 11 (2021) e3423. https://doi.org/10.15414/jmbfs.3423
  32. E. Mita, C. Tsitsimpikou, L. Tsiveleka, P. V. Petrakis, A. Ortiz, C. Vagias, V. Roussis, Holzforschung 56 (2002) 572–578. https://doi.org/10.1515/HF.2002.087
  33. F. A. Neis, F. de Costa, M. R. de Almeida, L. C. Colling, C. F. de Oliveira Junkes, J. P. Fett, A. G. Fett-Neto, Ind. Crops Prod. 132 (2019) 76–83. https://doi.org/10.1016/j.indcrop.2019.02.013
  34. A. Sukarno, Sutarman, Y. Q. Mondiana, D. W. Irawan, Y. A. Wiranegara, M. Abror, IOP Conf. Ser. Earth Environ. Sci. 1104 (2022) 012016. https://doi.org/10.1088/1755-1315/1104/1/012016
  35. D. Salaria, R. Rolta, C. N. Patel, K. Dev, A. Sourirajan, V. Kumar, J. Biomol. Struct. Dyn. (2021) 1–20. https://doi.org/10.1080/07391102.2021.1943530
  36. C. A. Lipinski, Drug Discov. Today Technol. 1 (2004) 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  37. L. Adjissi, N. Chafai, K. Benbouguerra, I. Kirouani, A. Hellal, H. Layaida, M. Elkolli, C. Bensouici, S. Chafaa, J. Mol. Struct. 1270 (2022) 134005. https://doi.org/10.1016/j.molstruc.2022.134005
  38. P. Yoganantharajah, A. P. Ray, D. J. Eyckens, L. C. Henderson, Y. Gibert, BMC Biotechnol. 18 (2018) 32. https://doi.org/10.1186/s12896-018-0442-1
  39. J. Galvao, B. Davis, M. Tilley, E. Normando, M. R. Duchen, M. F. Cordeiro, FASEB J. 28 (2014) 1317–1330. https://doi.org/10.1096/fj.13-235440
  40. F. Shakeel, S. Alshehri, M. Imran, N. Haq, A. Alanazi, Md. K. Anwer, Molecules 25 (2019) 171. https://doi.org/10.3390/molecules25010171
  41. D. De Ruysscher, L. Pang, C.-A. Mattelaer, M. Nautiyal, S. De Graef, J. Rozenski, S. V. Strelkov, E. Lescrinier, S. D. Weeks, A. Van Aerschot, Bioorg. Med. Chem. 28 (2020) 115580. . https://doi.org/10.1016/j.bmc.2020.115580
  42. M. S. Alwhibi, D. A. Soliman, H. al khaldy, A. Alonaizan, N. Abdulhaq Marraiki, M. El-Zaidy, M. S. AlSubeie, J. King Saud Univ. - Sci. 32 (2020) 3372–3379. https://doi.org/10.1016/j.jksus.2020.09.024
  43. M. A. Alshehri, J. K. Baskaradoss, A. Geevarghese, R. Ramakrishnaiah, D. N. Tatakis, Dent. Mater. J. 34 (2015) 148–153. https://doi.org/10.4012/dmj.2013-317
  44. A. S. Simbirtsev, V. G. Konusova, G. Sh. Mchelidze, E. Z. Fidarov, B. A. Paramonov, V. Yu. Chebotarev, Bull. Exp. Biol. Med. 133 (2002) 457–460. https://doi.org/10.1023/A:1019805603373
  45. E. Santovito, J. das Neves, D. Greco, V. D’Ascanio, B. Sarmento, A. F. Logrieco, G. Avantaggiato, Artif. Cells Nanomedicine Biotechnol. 46 (2018) 414–422. https://doi.org/10.1080/21691401.2018.1496924
  46. Y. Ito, T. Ito, K. Yamashiro, F. Mineshiba, K. Hirai, K. Omori, T. Yamamoto, S. Takashiba, Odontology 108 (2020) 57–65. https://doi.org/10.1007/s10266-019-00456-0
  47. T. A. Söderberg, R. Gref, S. Holm, T. Elmros, G. Hallmans, Scand. J. Plast. Reconstr. Surg. Hand Surg. 24 (1990) 199–205. https://doi.org/10.3109/02844319009041279
  48. C. Vilanova, M. Marín, J. Baixeras, A. Latorre, M. Porcar, PLoS ONE 9 (2014) e100740. https://doi.org/10.1371/journal.pone.0100740
  49. K. Sirivibulkovit, S. Nouanthavong, Y. Sameenoi, Anal. Sci. 34 (2018) 795–800. https://doi.org/10.2116/analsci.18P014
  50. S. R. Ahamad, A. R. Al-Ghadeer, R. Ali, W. Qamar, S. Aljarboa, Saudi Pharm. J. 25 (2017) 788–794. https://doi.org/10.1016/j.jsps.2016.10.011
  51. T. Liu, W. Wang, M. Liu, Y. Ma, F. Mu, X. Feng, Y. Zhang, C. Guo, Y. Ding, A. Wen, Int. Immunopharmacol. 89 (2020) 107094. https://doi.org/10.1016/j.intimp.2020.107094
  52. Y.-H. Liu, W.-L. Liang, C.-C. Lee, Y.-F. Tsai, W.-C. Hou, Food Chem. 129 (2011) 423–428. https://doi.org/10.1016/j.foodchem.2011.04.094
  53. V. Cuzzucoli Crucitti, L. M. Migneco, A. Piozzi, V. Taresco, M. Garnett, R. H. Argent, I. Francolini, Eur. J. Pharm. Biopharm. 125 (2018) 114–123. https://doi.org/10.1016/j.ejpb.2018.01.012
  54. A. Mirgorodskaya, R. Kushnazarova, R. Pavlov, F. Valeeva, O. Lenina, K. Bushmeleva, D. Kuryashov, A. Vyshtakalyuk, G. Gaynanova, K. Petrov, L. Zakharova, Molecules 27 (2022) 6447. https://doi.org/10.3390/molecules27196447
  55. C. M. Spagnol, R. P. Assis, I. L. Brunetti, V. L. B. Isaac, H. R. N. Salgado, M. A. Corrêa, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 219 (2019) 358–366. https://doi.org/10.1016/j.saa.2019.04.025
  56. Y.-Z. Zheng, G. Deng, R. Guo, Z.-M. Fu, D.-F. Chen, Bioorganic Chem. 105 (2020) 104341. https://doi.org/10.1016/j.bioorg.2020.104341
  57. D. Chavarria, S. Benfeito, P. Soares, C. Lima, J. Garrido, P. Serrão, P. Soares-da-Silva, F. Remião, P. J. Oliveira, F. Borges, Eur. J. Med. Chem. 243 (2022) 114740. https://doi.org/10.1016/j.ejmech.2022.114740
  58. Z. Boual, G. Pierre, A. Kemassi, S. Mosbah, F. Benaoun, C. Delattre, P. Michaud, 27 (2020) 50-55.
  59. R. A. A. Eid, Saudi Dent. J. 33 (2021) 44–54. https://doi.org/10.1016/j.sdentj.2019.11.011
  60. X. Q. Li, Y. Chen, G. C. Dai, B. B. Zhou, X. N. Yan, R. X. Tan, J. Ethnopharmacol. 272 (2021) 113934. https://doi.org/10.1016/j.jep.2021.113934
  61. B. Ahmad, M. Batool, Q. ul Ain, M. S. Kim, S. Choi, Int. J. Mol. BOUAL, Zakaria, PIERRE, Guillaume, KEMASSI, Abdellah, et al. Chemical Composition and Biological Activities of Water-Soluble Polysaccharides from Commiphora Myrrha (Nees) Engl. GUM. Analele Universităţii din Oradea, Fascicula Biologie, 2020, vol. 27, no 1, p. 50-55.Sci. 22 (2021) 9124. https://doi.org/10.3390/ijms22179124
  62. F. Ibrahim, M. S. Elgawish, E. Mehana, S. M. El-Adl, M. M. Baraka, S. M. Ibrahim, M. M. Sebaiy, Chem. Res. Toxicol. 33 (2020) 2647–2658. https://doi.org/10.1021/acs.chemrestox.0c00285
  63. M. Lai, L. Zhang, L. Lei, S. Liu, T. Jia, M. Yi, Ind. Crops Prod. 144 (2020) 112065. https://doi.org/10.1016/j.indcrop.2019.112065
  64. M. G. de Lima Silva, L. Y. S. da Silva, T. S. de Freitas, J. E. Rocha, R. L. S. Pereira, S. R. Tintino, M. R. C. de Oliveira, A. O. B. P. Bezerra Martins, M. C. P. Lima, G. C. Alverni da Hora, C. L. G. Ramalho, H. D. M. Coutinho, I. R. A. de Menezes, Process Biochem. 122 (2022) 363–372. https://doi.org/10.1016/j.procbio.2022.10.010
  65. G. Sharma, S. Rao, A. Bansal, S. Dang, S. Gupta, R. Gabrani, Biologicals 42 (2014) 1–7. https://doi.org/10.1016/j.biologicals.2013.11.001
  66. Z. Pang, R. Raudonis, B. R. Glick, T.-J. Lin, Z. Cheng, Biotechnol. Adv. 37 (2019) 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013
  67. M. Alhejaili, D. W. Olson, C. Velázquez, M. Janes, C. Boeneke, K. J. Aryana, J. Dairy Sci. 102 (2019) 2011–2016. https://doi.org/10.3168/jds.2018-14831
  68. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7 (2017) 42717. https://doi.org/10.1038/srep42717
  69. M. Anza, M. Endale, L. Cardona, D. Cortes, R. Eswaramoorthy, J. Zueco, H. Rico, M. Trelis, B. Abarca, Adv. Appl. Bioinforma. Chem. Volume 14 (2021) 117–132. https://doi.org/10.2147/AABC.S323657
  70. E. Netto, R. Netto, M. Santana, J. Moura-Neto, L. Ferreira, Asian Pac. J. Cancer Prev. 22 (2021) 2289–2294. https://doi.org/10.31557/APJCP.2021.22.7.2289
  71. K. N. Theken, C. R. Lee, L. Gong, K. E. Caudle, C. M. Formea, A. Gaedigk, T. E. Klein, J. https://doi.org/10.1002/cpt.1830 A. G. Agúndez, T. Grosser, Clin. Pharmacol. Ther. 108 (2020) 191–200.
  72. V. Chubukov, F. Mingardon, W. Schackwitz, E. E. K. Baidoo, J. Alonso-Gutierrez, Q. Hu, T. S. Lee, J. D. Keasling, A. Mukhopadhyay, Appl. Environ. Microbiol. 81 (2015) 4690–4696. https://doi.org/10.1128/AEM.01102-15
  73. Q. Wei, K. Harada, S. Ohmori, K. Minamoto, C. Wei, A. Ueda, J. Occup. Health 48 (2006) 480–486. https://doi.org/10.1539/joh.48.480
  74. S. G. Kshirsagar, R. V. Rao, Medicina (Mex.) 57 (2021) 217. https://doi.org/10.3390/medicina57030217

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP