ACTIVATED CARBON, BIOCHAR, AND LIGNOCELLULOSIC DERIVATIVE MATERIALS FOR REMOVING ANTIBIOTICS FROM WATER: AN OVERVIEW

- Lignocellulose,
- activated carbon,
- biochar,
- adsorption,
- antibiotic
- pollution ...More
Copyright (c) 2024 SChQ

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Antibiotics have improved the quality of life of human society due to their applications in medicine and food production. Nevertheless, antibiotics are also considered emerging pollutants because they have been found in the environment, water sources, and tap water. Their chemical stability and the excessive usage of these substances are the main causes of their presence in the environment. Antibiotics can be removed from water using adsorbent materials, in which activated charcoal has been extensively used for removing organic pollutants. Concerns about the environmental impact of producing activated charcoal are placing the interest in new eco-friendly materials for organic pollutant removal from water such as biochar and lignocellulosic materials. Those materials have desirable properties that allow them to remediate water in the presence of antibiotics.
In this study, the use of activated carbon, biochar, and lignocellulosic materials for removing antibiotics from water is reviewed. Here we discuss the advantages and limitations of each material for the aforementioned purpose, comparing their efficiency in the removal of common antibiotics used in healthcare and agroindustry, and considering new approaches and alternatives to the technologies used for antibiotic removal from water.
References
- Bhattacharjee, M.K. Chemistry of Antibiotics and Related Drugs; Springer International Publishing: Cham, 2016; ISBN 9783319407449.
- Stockwell, V.O.; Duffy, B. Use of Antibiotics in Plant Agriculture: -EN- -FR- Utilisation Des Antibiotiques En Agriculture (Productions Végétales) -ES- Uso de Antibióticos En La Agricultura. Rev. Sci. Tech. 2012, 31, 199–210, doi:10.20506/rst.31.1.2104.
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22, doi:10.1177/003335491212700103.
- Kucers, A.; Crowe, S.; Grayson, M.; Hoy, J. The Use of Antibiotics, 5Ed: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs; CRC Press: Boca Raton, FL, 1997; ISBN 9780750601559.
- Machowska, A.; Stålsby Lundborg, C. Drivers of Irrational Use of Antibiotics in Europe. Int. J. Environ. Res. Public Health 2018, 16, 27, doi:10.3390/ijerph16010027.
- Kümmerer, K. Antibiotics in the Aquatic Environment – A Review – Part II. Chemosphere 2009, 75, 435–441, doi:10.1016/j.chemosphere.2008.12.006.
- Larsson, D.G.J. Antibiotics in the Environment. Ups. J. Med. Sci. 2014, 119, 108–112, doi:10.3109/03009734.2014.896438.
- Kummerer, K. Significance of Antibiotics in the Environment. J. Antimicrob. Chemother. 2003, 52, 5–7, doi:10.1093/jac/dkg293.
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39, doi:10.1016/j.microc.2017.02.006.
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean (Weinh.) 2015, 43, 479–489, doi:10.1002/clen.201300989.
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793–804, doi:10.1016/j.scitotenv.2019.01.406.
- Godoy, M.; Sánchez, J. Antibiotics as Emerging Pollutants in Water and Its Treatment. In Antibiotic Materials in Healthcare; Elsevier, 2020; pp. 221–230.
- Sanganyado, E.; Gwenzi, W. Antibiotic Resistance in Drinking Water Systems: Occurrence, Removal, and Human Health Risks. Sci. Total Environ. 2019, 669, 785–797, doi:10.1016/j.scitotenv.2019.03.162.
- Dutta, J.; Mala, A.A. Removal of Antibiotics from the Water Environment by the Adsorption Technologies: A Review. Water Sci. Technol. 2020, doi:10.2166/wst.2020.335.
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213, doi:10.1007/s10311-018-0786-8.
- Vinayagam, V.; Murugan, S.; Kumaresan, R.; Narayanan, M.; Sillanpää, M.; Viet N Vo, D.; Kushwaha, O.S.; Jenis, P.; Potdar, P.; Gadiya, S. Sustainable Adsorbents for the Removal of Pharmaceuticals from Wastewater: A Review. Chemosphere 2022, 300, 134597, doi:10.1016/j.chemosphere.2022.134597.
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. (Amst.) 2020, 28, e00570, doi:10.1016/j.btre.2020.e00570.
- Krasucka, P.; Pan, B.; Sik Ok, Y.; Mohan, D.; Sarkar, B.; Oleszczuk, P. Engineered Biochar – A Sustainable Solution for the Removal of Antibiotics from Water. Chem. Eng. J. 2021, 405, 126926, doi:10.1016/j.cej.2020.126926.
- Eniola, J.O.; Kumar, R.; Barakat, M.A. Adsorptive Removal of Antibiotics from Water over Natural and Modified Adsorbents. Environ. Sci. Pollut. Res. Int. 2019, 26, 34775–34788, doi:10.1007/s11356-019-06641-6.
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive Removal of Antibiotics from Water and Wastewater: Progress and Challenges. Sci. Total Environ. 2015, 532, 112–126, doi:10.1016/j.scitotenv.2015.05.130.
- Malakootian, M.; Yaseri, M.; Faraji, M. Removal of Antibiotics from Aqueous Solutions by Nanoparticles: A Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 8444–8458, doi:10.1007/s11356-019-04227-w.
- Alegbeleye, O.; Daramola, O.B.; Adetunji, A.T.; Ore, O.T.; Ayantunji, Y.J.; Omole, R.K.; Ajagbe, D.; Adekoya, S.O. Efficient Removal of Antibiotics from Water Resources Is a Public Health Priority: A Critical Assessment of the Efficacy of Some Remediation Strategies for Antibiotics in Water. Environ. Sci. Pollut. Res. Int. 2022, 29, 56948–57020, doi:10.1007/s11356-022-21252-4.
- Mangla, D.; Annu; Sharma, A.; Ikram, S. Critical Review on Adsorptive Removal of Antibiotics: Present Situation, Challenges and Future Perspective. J. Hazard. Mater. 2022, 425, 127946, doi:10.1016/j.jhazmat.2021.127946.
- Lima, L.M.; Silva, B.N.M. da; Barbosa, G.; Barreiro, E.J. β-Lactam Antibiotics: An Overview from a Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2020, 208, 112829, doi:10.1016/j.ejmech.2020.112829.
- Becker, B.; Cooper, M.A. Aminoglycoside Antibiotics in the 21st Century. ACS Chem. Biol. 2013, 8, 105–115, doi:10.1021/cb3005116.
- Macrolide Antibiotics; Elsevier, 2003; ISBN 9780125264518.
- Mazzei, T.; Mini, E.; Novelli, A.; Periti, P. Chemistry and Mode of Action of Macrolides. J. Antimicrob. Chemother. 1993, 31, 1–9, doi:10.1093/jac/31.suppl_c.1.
- Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone Antibacterials: A Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol. Pharm. 2009, 66.
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone Antibiotics: An Emerging Class of Environmental Micropollutants. Sci. Total Environ. 2014, 500–501, 250–269, doi:10.1016/j.scitotenv.2014.08.075.
- Daghrir, R.; Drogui, P. Tetracycline Antibiotics in the Environment: A Review. Environ. Chem. Lett. 2013, 11, 209–227, doi:10.1007/s10311-013-0404-8.
- Zakeri, B.; Wright, G.D. Chemical Biology of Tetracycline AntibioticsThis Paper Is One of a Selection of Papers Published in This Special Issue, Entitled CSBMCB — Systems and Chemical Biology, and Has Undergone the Journal’s Usual Peer Review Process. Biochem. Cell Biol. 2008, 86, 124–136, doi:10.1139/o08-002.
- Vass, M.; Hruska, K.; Franek, M. Nitrofuran Antibiotics: A Review on the Application, Prohibition and Residual Analysis. Vet. Med. (Praha) 2008, 53, 469–500, doi:10.17221/1979-vetmed.
- Miura, K.; Reckendorf, H.K. 6 The Nitrofurans. In Progress in Medicinal Chemistry; Elsevier, 1967; pp. 320–381 ISBN 9780444533241.
- I. H. El-Qaliei, M.; El-Gaby, M.; A. Ammar, Y.; M. ali, A.; F. Hussein, M.; A. Faraghally, F. Sulfonamides: Synthesis and the Recent Applications in Medicinal Chemistry. Egypt. J. Chem. 2020, 0, 0–0, doi:10.21608/ejchem.2020.33860.2707.
- Chinthakindi, P.K.; Naicker, T.; Thota, N.; Govender, T.; Kruger, H.G.; Arvidsson, P.I. Sulfonimidamides in Medicinal and Agricultural Chemistry. Angew. Chem. Int. Ed Engl. 2017, 56, 4100–4109, doi:10.1002/anie.201610456.
- Sukul, P.; Spiteller, M. Sulfonamides in the Environment as Veterinary Drugs. In Reviews of Environmental Contamination and Toxicology; Springer New York: New York, NY, 2006; pp. 67–101 ISBN 9781461270768.
- Shah, S.S.A.; Rivera, G.; Ashfaq, M. Recent Advances in Medicinal Chemistry of Sulfonamides. Rational Design as Anti-Tumoral, Anti-Bacterial and Anti-Inflammatory Agents. Mini-Reviews in Medicinal Chemistry 13, 70–86, doi:10.2174/13895575130107.
- Sharma, G.; Sharma, S.; Kumar, A.; Lai, C.W.; Naushad, M.; Shehnaz; Iqbal, J.; Stadler, F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorp. Sci. Technol. 2022, 2022, 1–21, doi:10.1155/2022/4184809.
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33, doi:10.1016/j.chemosphere.2013.10.071.
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. Glob. Change Biol. Bioenergy 2021, 13, 1731–1764, doi:10.1111/gcbb.12885.
- Shukla, P.; Giri, B.S.; Mishra, R.K.; Pandey, A.; Chaturvedi, P. Lignocellulosic Biomass-Based Engineered Biochar Composites: A Facile Strategy for Abatement of Emerging Pollutants and Utilization in Industrial Applications. Renew. Sustain. Energy Rev. 2021, 152, 111643, doi:10.1016/j.rser.2021.111643.
- Salfate, G.; Sánchez, J. Rare Earth Elements Uptake by Synthetic Polymeric and Cellulose-Based Materials: A Review. Polymers (Basel) 2022, 14, 4786, doi:10.3390/polym14214786.
- Ghiorghita, C.-A.; Dinu, M.V.; Lazar, M.M.; Dragan, E.S. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. Molecules 2022, 27, 8574, doi:10.3390/molecules27238574.
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116, doi:10.1016/j.watres.2017.04.014.
- Battak, N.; Kamin, Z.; Bahrun, M.H.V.; Chiam, C.K.; Peter, E.; Bono, A. Removal of Trace Plant Antibiotics from Water Systems by Adsorption: A Review. J. Mol. Liq. 2022, 45, 1721–1730, doi:10.1002/ceat.202200032.
- Kumar, K.V.; Porkodi, K. Relation between Some Two- and Three-Parameter Isotherm Models for the Sorption of Methylene Blue onto Lemon Peel. J. Hazard. Mater. 2006, 138, 633–635, doi:10.1016/j.jhazmat.2006.06.078.
- Rajabi, M.; Keihankhadiv, S.; Suhas; Tyagi, I.; Karri, R.R.; Chaudhary, M.; Mubarak, N.M.; Chaudhary, S.; Kumar, P.; Singh, P. Comparison and Interpretation of Isotherm Models for the Adsorption of Dyes, Proteins, Antibiotics, Pesticides and Heavy Metal Ions on Different Nanomaterials and Non-Nano Materials—a Comprehensive Review. J. Nanostructure Chem. 2023, 13, 43–65, doi:10.1007/s40097-022-00509-x.
- Zhao, H.; Wang, Z.; Liang, Y.; Wu, T.; Chen, Y.; Yan, J.; Zhu, Y.; Ding, D. Adsorptive Decontamination of Antibiotics from Livestock Wastewater by Using Alkaline-Modified Biochar. Environ. Res. 2023, 226, 115676, doi:10.1016/j.envres.2023.115676.
- Boulett, A.; Roa, K.; Oyarce, E.; Xiao, L.-P.; Sun, R.-C.; Pizarro, G. del C.; Sánchez, J. Reusable Hydrogels Based on Lignosulfonate and Cationic Polymer for the Removal of Cr(VI) from Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130359, doi:10.1016/j.colsurfa.2022.130359.
- Oyarce, E.; Cantero-López, P.; Roa, K.; Boulett, A.; Yáñez, O.; Santander, P.; del C. Pizarro, G.; Sánchez, J. Removal of Highly Concentrated Methylene Blue Dye by Cellulose Nanofiber Biocomposites. Int. J. Biol. Macromol. 2023, 238, 124045, doi:10.1016/j.ijbiomac.2023.124045.
- Benjelloun, M.; Miyah, Y.; Akdemir Evrendilek, G.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arab. J. Chem. 2021, 14, 103031, doi:10.1016/j.arabjc.2021.103031.
- Miao, J.; Wang, F.; Chen, Y.; Zhu, Y.; Zhou, Y.; Zhang, S. The Adsorption Performance of Tetracyclines on Magnetic Graphene Oxide: A Novel Antibiotics Absorbent. J. Environ. Sci. (China) 2019, 475, 549–558, doi:10.1016/j.apsusc.2019.01.036.
- Rostamian, R.; Behnejad, H. A Comprehensive Adsorption Study and Modeling of Antibiotics as a Pharmaceutical Waste by Graphene Oxide Nanosheets. J. Hazard. Mater. 2018, 147, 117–123, doi:10.1016/j.ecoenv.2017.08.019.
- Yu, F.; Li, Y.; Huang, G.; Yang, C.; Chen, C.; Zhou, T.; Zhao, Y.; Ma, J. Adsorption Behavior of the Antibiotic Levofloxacin on Microplastics in the Presence of Different Heavy Metals in an Aqueous Solution. Biomass Convers. Biorefin. 2020, 260, doi:10.1016/j.chemosphere.2020.127650.
- Azhar, M.R.; Abid, H.R.; Sun, H.; Periasamy, V.; Tadé, M.O.; Wang, S. Excellent Performance of Copper Based Metal Organic Framework in Adsorptive Removal of Toxic Sulfonamide Antibiotics from Wastewater. Ecotoxicol. Environ. Saf. 2016, 478, 344–352, doi:10.1016/j.jcis.2016.06.032.
- Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L.; et al. A Review of Metal Organic Framework (MOFs)-Based Materials for Antibiotics Removal via Adsorption and Photocatalysis. Water Sci. Technol. 2021, 272, 1484–1494, doi:10.1016/j.chemosphere.2020.129501.
- Jayawardena, R.; Eldridge, D.S.; Malherbe, F. Sonochemical Synthesis of Improved Graphene Oxide for Enhanced Adsorption of Methylene Blue. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129587, doi:10.1016/j.colsurfa.2022.129587.
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption Isotherms and Kinetic Modeling of Methylene Blue Dye onto a Carbonaceous Hydrochar Adsorbent Derived from Coffee Husk Waste. Sci. Total Environ. 2020, 725, 138325, doi:10.1016/j.scitotenv.2020.138325.
- Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682, doi:10.1016/j.jece.2016.05.009.
- Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985, doi:10.1021/je800661q.
- Huang, F.-C.; Lee, C.-K.; Han, Y.-L.; Chao, W.-C.; Chao, H.-P. Preparation of Activated Carbon Using Micro-Nano Carbon Spheres through Chemical Activation. J. Taiwan Inst. Chem. Eng. 2014, 45, 2805–2812, doi:10.1016/j.jtice.2014.08.004.
- Sawant, S.Y.; Munusamy, K.; Somani, R.S.; John, M.; Newalkar, B.L.; Bajaj, H.C. Precursor Suitability and Pilot Scale Production of Super Activated Carbon for Greenhouse Gas Adsorption and Fuel Gas Storage. Chem. Eng. J. 2017, 315, 415–425, doi:10.1016/j.cej.2017.01.037.
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415, doi:10.1007/s10311-019-00955-0.
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive Removal of Antibiotics from Aqueous Solution Using Carbon Materials. Chemosphere 2016, 153, 365–385, doi:10.1016/j.chemosphere.2016.03.083.
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy 2018, 115, 64–73, doi:10.1016/j.biombioe.2018.04.015.
- Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.-A.; Sirinuntawittaya, N.; Dutta, A. Production of Activated Carbon from Coconut Shell: Optimization Using Response Surface Methodology. Bioresour. Technol. 2008, 99, 4887–4895, doi:10.1016/j.biortech.2007.09.042.
- Rambabu, N.; Rao, B.V.S.K.; Surisetty, V.R.; Das, U.; Dalai, A.K. Production, Characterization, and Evaluation of Activated Carbons from de-Oiled Canola Meal for Environmental Applications. Ind. Crops Prod. 2015, 65, 572–581, doi:10.1016/j.indcrop.2014.09.046.
- El-Shafey, E.-S.I.; Al-Lawati, H.; Al-Sumri, A.S. Ciprofloxacin Adsorption from Aqueous Solution onto Chemically Prepared Carbon from Date Palm Leaflets. J. Environ. Sci. (China) 2012, 24, 1579–1586, doi:10.1016/s1001-0742(11)60949-2.
- Chandrasekaran, A.; Patra, C.; Narayanasamy, S.; Subbiah, S. Adsorptive Removal of Ciprofloxacin and Amoxicillin from Single and Binary Aqueous Systems Using Acid-Activated Carbon from Prosopis Juliflora. Environ. Res. 2020, 188, 109825, doi:10.1016/j.envres.2020.109825.
- Huang, L.; Wang, M.; Shi, C.; Huang, J.; Zhang, B. Adsorption of Tetracycline and Ciprofloxacin on Activated Carbon Prepared from Lignin with H3PO4Activation. Desalination Water Treat. 2014, 52, 2678–2687, doi:10.1080/19443994.2013.833873.
- Agboola, O.S.; Bello, O.S. Enhanced Adsorption of Ciprofloxacin from Aqueous Solutions Using Functionalized Banana Stalk. Biomass Convers. Biorefin. 2022, 12, 5463–5478, doi:10.1007/s13399-020-01038-9.
- Guellati, A.; Maachi, R.; Chaabane, T.; Darchen, A.; Danish, M. Aluminum Dispersed Bamboo Activated Carbon Production for Effective Removal of Ciprofloxacin Hydrochloride Antibiotics: Optimization and Mechanism Study. J. Environ. Manage. 2022, 301, 113765, doi:10.1016/j.jenvman.2021.113765.
- Alacabey, İ. Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules 2022, 27, 1380, doi:10.3390/molecules27041380.
- Sousa, É.M.L.; Otero, M.; Rocha, L.S.; Gil, M.V.; Ferreira, P.; Esteves, V.I.; Calisto, V. Multivariable Optimization of Activated Carbon Production from Microwave Pyrolysis of Brewery Wastes - Application in the Removal of Antibiotics from Water. J. Hazard. Mater. 2022, 431, 128556, doi:10.1016/j.jhazmat.2022.128556.
- Darweesh, T.M.; Ahmed, M.J. Adsorption of Ciprofloxacin and Norfloxacin from Aqueous Solution onto Granular Activated Carbon in Fixed Bed Column. Ecotoxicol. Environ. Saf. 2017, 138, 139–145, doi:10.1016/j.ecoenv.2016.12.032.
- Bednárek, J.; Matějová, L.; Koutník, I.; Vráblová, M.; Cruz, G.J.F.; Strašák, T.; Šiler, P.; Hrbáč, J. Revelation of High-Adsorption-Performance Activated Carbon for Removal of Fluoroquinolone Antibiotics from Water. Biomass Convers. Biorefin. 2022, doi:10.1007/s13399-022-02577-z.
- Liu, H.; Ning, W.; Cheng, P.; Zhang, J.; Wang, Y.; Zhang, C. Evaluation of Animal Hairs-Based Activated Carbon for Sorption of Norfloxacin and Acetaminophen by Comparing with Cattail Fiber-Based Activated Carbon. J. Anal. Appl. Pyrolysis 2013, 101, 156–165, doi:10.1016/j.jaap.2013.01.016.
- Palacio, D.A.; Urbano, B.F.; Rivas, B.L. Application of Nanocomposite Polyelectrolytes for the Removal of Antibiotics as Emerging Pollutants in Water. J. Water Proc.engineering 2022, 46, 102582, doi:10.1016/j.jwpe.2022.102582.
- Moreira, N.F.F.; Orge, C.A.; Ribeiro, A.R.; Faria, J.L.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. Fast Mineralization and Detoxification of Amoxicillin and Diclofenac by Photocatalytic Ozonation and Application to an Urban Wastewater. Water Res. 2015, 87, 87–96, doi:10.1016/j.watres.2015.08.059.
- Balarak, D.; Mostafapour, F.; Akbari, H.; Joghtaei, A. Adsorption of Amoxicillin Antibiotic from Pharmaceutical Wastewater by Activated Carbon Prepared from Azolla Filiculoides. J. Pharm. Res. Int. 2017, 18, 1–13, doi:10.9734/jpri/2017/35607.
- Berges, J.; Moles, S.; Ormad, M.P.; Mosteo, R.; Gómez, J. Antibiotics Removal from Aquatic Environments: Adsorption of Enrofloxacin, Trimethoprim, Sulfadiazine, and Amoxicillin on Vegetal Powdered Activated Carbon. Environ. Sci. Pollut. Res. Int. 2021, 28, 8442–8452, doi:10.1007/s11356-020-10972-0.
- Hashemzadeh, F.; Ariannezhad, M.; Derakhshandeh, S.H. Evaluation of Cephalexin and Amoxicillin Removal from Aqueous Media Using Activated Carbon Produced from Aloe Vera Leaf Waste. Chem. Phys. Lett. 2022, 800, 139656, doi:10.1016/j.cplett.2022.139656.
- Ali, I.; Afshinb, S.; Poureshgh, Y.; Azari, A.; Rashtbari, Y.; Feizizadeh, A.; Hamzezadeh, A.; Fazlzadeh, M. Green Preparation of Activated Carbon from Pomegranate Peel Coated with Zero-Valent Iron Nanoparticles (NZVI) and Isotherm and Kinetic Studies of Amoxicillin Removal in Water. Environ. Sci. Pollut. Res. Int. 2020, 27, 36732–36743, doi:10.1007/s11356-020-09310-1.
- Ovung, A.; Bhattacharyya, J. Sulfonamide Drugs: Structure, Antibacterial Property, Toxicity, and Biophysical Interactions. Biophys. Rev. 2021, 13, 259–272, doi:10.1007/s12551-021-00795-9.
- Fan, Y.; Zheng, C.; Hou, H. Preparation of Granular Activated Carbon and Its Mechanism in the Removal of Isoniazid, Sulfamethoxazole, Thiamphenicol, and Doxycycline from Aqueous Solution. Environ. Eng. Sci. 2019, 36, 1027–1040, doi:10.1089/ees.2018.0472.
- Jaria, G.; Calisto, V.; Gil, M.V.; Ferreira, P.; Santos, S.M.; Otero, M.; Esteves, V.I. Effects of Thiol Functionalization of a Waste-Derived Activated Carbon on the Adsorption of Sulfamethoxazole from Water: Kinetic, Equilibrium and Thermodynamic Studies. J. Mol. Liq. 2021, 323, 115003, doi:10.1016/j.molliq.2020.115003.
- Hu, W.; Niu, Y.; Dong, K.; Wang, D. Removal of Sulfamethoxazole from Aqueous Solution onto Bagasse-Derived Activated Carbon: Response Surface Methodology, Isotherm and Kinetics Studies. J. Mol. Liq. 2022, 347, 118141, doi:10.1016/j.molliq.2021.118141.
- Akhtar, J.; Amin, N.S.; Aris, A. Combined Adsorption and Catalytic Ozonation for Removal of Sulfamethoxazole Using Fe2O3/CeO2 Loaded Activated Carbon. Chem. Eng. J. 2011, 170, 136–144, doi:10.1016/j.cej.2011.03.043.
- Teixeira, S.; Delerue-Matos, C.; Santos, L. Application of Experimental Design Methodology to Optimize Antibiotics Removal by Walnut Shell Based Activated Carbon. Sci. Total Environ. 2019, 646, 168–176, doi:10.1016/j.scitotenv.2018.07.204.
- Askari, R.; Afshin, S.; Rashtbari, Y.; Moharrami, A.; Mohammadi, F.; Vosuoghi, M.; Dargahi, A. Synthesis of Activated Carbon from Walnut Wood and Magnetized with Cobalt Ferrite (CoFe2O4) and Its Application in Removal of Cephalexin from Aqueous Solutions. J. Dispers. Sci. Technol. 2023, 44, 1183–1194, doi:10.1080/01932691.2021.2008421.
- Ahmed, M.J.; Theydan, S.K. Adsorption of Cephalexin onto Activated Carbons from Albizia Lebbeck Seed Pods by Microwave-Induced KOH and K2CO3 Activations. Chem. Eng. J. 2012, 211–212, 200–207, doi:10.1016/j.cej.2012.09.089.
- Pouretedal, H.R.; Sadegh, N. Effective Removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from Aqueous Solutions Using Activated Carbon Nanoparticles Prepared from Vine Wood. J. Water Proc.engineering 2014, 1, 64–73, doi:10.1016/j.jwpe.2014.03.006.
- Chamberlain, R.E. Chemotherapeutic Properties of Prominent Nitrofurans. J. Antimicrob. Chemother. 1976, 2, 325–336, doi:10.1093/jac/2.4.325.
- Ahmed, M.J.; Theydan, S.K. Microwave Assisted Preparation of Microporous Activated Carbon from Siris Seed Pods for Adsorption of Metronidazole Antibiotic. Chem. Eng. J. 2013, 214, 310–318, doi:10.1016/j.cej.2012.10.101.
- Ebili, P.E.; Auta, M.; Obayomi, K.S.; Okafor, J.O.; Yahya, M.D.; Faruq, A.A. Comparative Analysis of Linear and Nonlinear Equilibrium Models for the Removal of Metronidazole by Tea Waste Activated Carbon. Water Sci. Technol. 2020, 82, 1484–1494, doi:10.2166/wst.2020.428.
- Manjunath, S.V.; Kumar, M. Simultaneous Removal of Antibiotic and Nutrients via Prosopis Juliflora Activated Carbon Column: Performance Evaluation, Effect of Operational Parameters and Breakthrough Modeling. Chemosphere 2021, 262, 127820, doi:10.1016/j.chemosphere.2020.127820.
- Wang, W.; Kang, R.; Yin, Y.; Tu, S.; Ye, L. Two-Step Pyrolysis Biochar Derived from Agro-Waste for Antibiotics Removal: Mechanisms and Stability. Chemosphere 2022, 292, 133454, doi:10.1016/j.chemosphere.2021.133454.
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of Feedstock Type, Production Method, and Pyrolysis Temperature on Biochar and Hydrochar Properties. Chem. Eng. J. 2014, 240, 574–578, doi:10.1016/j.cej.2013.10.081.
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Xie, S.; Wang, Y.; Ma, J.; Shang, X. Study of Ciprofloxacin Removal by Biochar Obtained from Used Tea Leaves. J. Environ. Sci. (China) 2018, 73, 20–30, doi:10.1016/j.jes.2017.12.024.
- Zeng, Z.-W.; Tian, S.-R.; Liu, Y.-G.; Tan, X.-F.; Zeng, G.-M.; Jiang, L.-H.; Yin, Z.-H.; Liu, N.; Liu, S.-B.; Li, J. Comparative Study of Rice Husk Biochars for Aqueous Antibiotics Removal. J. Chem. Technol. Biotechnol. 2018, 93, 1075–1084, doi:10.1002/jctb.5464.
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Wang, Y. Ciprofloxacin Adsorption by Biochar Derived from Co-Pyrolysis of Sewage Sludge and Bamboo Waste. Environ. Sci. Pollut. Res. Int. 2020, 27, 22806–22817, doi:10.1007/s11356-020-08333-y.
- Patel, M.; Kumar, R.; Pittman, C.U., Jr; Mohan, D. Ciprofloxacin and Acetaminophen Sorption onto Banana Peel Biochars: Environmental and Process Parameter Influences. Environ. Res. 2021, 201, 111218, doi:10.1016/j.envres.2021.111218.
- Zhang, X.; Chu, Y.; Zhang, H.; Hu, J.; Wu, F.; Wu, X.; Shen, G.; Yang, Y.; Wang, B.; Wang, X. A Mechanistic Study on Removal Efficiency of Four Antibiotics by Animal and Plant Origin Precursors-Derived Biochars. Sci. Total Environ. 2021, 772, 145468, doi:10.1016/j.scitotenv.2021.145468.
- Hu, Y.; Zhu, Y.; Zhang, Y.; Lin, T.; Zeng, G.; Zhang, S.; Wang, Y.; He, W.; Zhang, M.; Long, H. An Efficient Adsorbent: Simultaneous Activated and Magnetic ZnO Doped Biochar Derived from Camphor Leaves for Ciprofloxacin Adsorption. Bioresour. Technol. 2019, 288, 121511, doi:10.1016/j.biortech.2019.121511.
- Zhou, Y.; Cao, S.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A Novel Fe3O4/Graphene Oxide/Citrus Peel-Derived Bio-Char Based Nanocomposite with Enhanced Adsorption Affinity and Sensitivity of Ciprofloxacin and Sparfloxacin. Bioresour. Technol. 2019, 292, 121951, doi:10.1016/j.biortech.2019.121951.
- Sayin, F.; Akar, S.T.; Akar, T. From Green Biowaste to Water Treatment Applications: Utilization of Modified New Biochar for the Efficient Removal of Ciprofloxacin. Sustain. Chem. Pharm. 2021, 24, 100522, doi:10.1016/j.scp.2021.100522.
- Li, R.; Wang, Z.; Guo, J.; Li, Y.; Zhang, H.; Zhu, J.; Xie, X. Enhanced Adsorption of Ciprofloxacin by KOH Modified Biochar Derived from Potato Stems and Leaves. Water Sci. Technol. 2018, 77, 1127–1136, doi:10.2166/wst.2017.636.
- Egbedina, A.O.; Adebowale, K.O.; Olu-Owolabi, B.I.; Unuabonah, E.I.; Adesina, M.O. Green Synthesis of ZnO Coated Hybrid Biochar for the Synchronous Removal of Ciprofloxacin and Tetracycline in Wastewater. RSC Adv. 2021, 11, 18483–18492, doi:10.1039/d1ra01130h.
- Hamadeen, H.M.; Elkhatib, E.A. New Nanostructured Activated Biochar for Effective Removal of Antibiotic Ciprofloxacin from Wastewater: Adsorption Dynamics and Mechanisms. Environ. Res. 2022, 210, 112929, doi:10.1016/j.envres.2022.112929.
- Atugoda, T.; Gunawardane, C.; Ahmad, M.; Vithanage, M. Mechanistic Interaction of Ciprofloxacin on Zeolite Modified Seaweed (Sargassum Crassifolium) Derived Biochar: Kinetics, Isotherm and Thermodynamics. Chemosphere 2021, 281, 130676, doi:10.1016/j.chemosphere.2021.130676.
- Nguyen, T.-B.; Truong, Q.-M.; Chen, C.-W.; Doong, R.-A.; Chen, W.-H.; Dong, C.-D. Mesoporous and Adsorption Behavior of Algal Biochar Prepared via Sequential Hydrothermal Carbonization and ZnCl2 Activation. Bioresour. Technol. 2022, 346, 126351, doi:10.1016/j.biortech.2021.126351.
- Wu, J.; Wang, T.; Liu, Y.; Tang, W.; Geng, S.; Chen, J. Norfloxacin Adsorption and Subsequent Degradation on Ball-Milling Tailored N-Doped Biochar. Chemosphere 2022, 303, 135264, doi:10.1016/j.chemosphere.2022.135264.
- Wan, J.; Liu, L.; Ayub, K.S.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Characterization and Adsorption Performance of Biochars Derived from Three Key Biomass Constituents. Fuel (Lond.) 2020, 269, 117142, doi:10.1016/j.fuel.2020.117142.
- Meng, Q.; Zhang, Y.; Meng, D.; Liu, X.; Zhang, Z.; Gao, P.; Lin, A.; Hou, L. Removal of Sulfadiazine from Aqueous Solution by In-Situ Activated Biochar Derived from Cotton Shell. Environ. Res. 2020, 191, 110104, doi:10.1016/j.envres.2020.110104.
- Sun, Y.; Zheng, L.; Zheng, X.; Xiao, D.; Yang, Y.; Zhang, Z.; Ai, B.; Sheng, Z. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization. Front. Chem. 2022, 9, doi:10.3389/fchem.2021.814647.
- Liu, S.; Wang, Y.; Feng, Z.; Wang, Y.; Sun, T. Hierarchical Porous Biochar with Ultra-High Specific Surface Area for Rapid Removal of Antibiotics from Water. New J Chem 2021, 45, 17418–17427, doi:10.1039/d1nj02686k.
- Li, Y.; Shang, H.; Cao, Y.; Yang, C.; Feng, Y.; Yu, Y. High Performance Removal of Sulfamethoxazole Using Large Specific Area of Biochar Derived from Corncob Xylose Residue. Biochar 2022, 4, doi:10.1007/s42773-021-00128-9.
- Chu, Z.; Zheng, B.; Wang, W.; Li, Y.; Yang, Y.; Yang, Z. Magnetic Nitrogen–Doped Biochar for Adsorptive and Oxidative Removal of Antibiotics in Aqueous Solutions. Sep. Purif. Technol. 2022, 297, 121508, doi:10.1016/j.seppur.2022.121508.
- Thakur, V.K.; Thakur, M.K. Recent Advances in Green Hydrogels from Lignin: A Review. Int. J. Biol. Macromol. 2015, 72, 834–847, doi:10.1016/j.ijbiomac.2014.09.044.
- Roa, K.; Oyarce, E.; Boulett, A.; ALSamman, M.; Oyarzún, D.; Pizarro, G.D.C.; Sánchez, J. Lignocellulose-Based Materials and Their Application in the Removal of Dyes from Water: A Review. Sustain. Mater. Technol. 2021, 29, e00320, doi:10.1016/j.susmat.2021.e00320.
- Pham, T.; Bui, T.; Nguyen, V.; Bui, T.; Tran, T.; Phan, Q.; Pham, T.; Hoang, T. Adsorption of Polyelectrolyte onto Nanosilica Synthesized from Rice Husk: Characteristics, Mechanisms, and Application for Antibiotic Removal. Polymers (Basel) 2018, 10, 220, doi:10.3390/polym10020220.
- Ventura-Cruz, S.; Tecante, A. Nanocellulose and Microcrystalline Cellulose from Agricultural Waste: Review on Isolation and Application as Reinforcement in Polymeric Matrices. Food Hydrocoll. 2021, 118, 106771, doi:10.1016/j.foodhyd.2021.106771.
- El-Samaligy, M.S.; El-Mahrouk, G.M.; El-Kirsh, T.A. Adsorption—Desorption Effect of Microcrystalline Cellulose on Ampicillin and Amoxycillin. Int. J. Pharm. 1986, 31, 137–144, doi:10.1016/0378-5173(86)90223-1.
- Feizi, Z.H.; Fatehi, P. Interaction of Carboxyalkylated Cellulose Nanocrystals and Antibiotics. ACS Appl. Bio Mater. 2021, 4, 4165–4175, doi:10.1021/acsabm.0c01664.
- Yao, Q.; Fan, B.; Xiong, Y.; Jin, C.; Sun, Q.; Sheng, C. 3D Assembly Based on 2D Structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Sci. Rep. 2017, 7, doi:10.1038/srep45914.
- Tao, J.; Yang, J.; Ma, C.; Li, J.; Du, K.; Wei, Z.; Chen, C.; Wang, Z.; Zhao, C.; Deng, X. Cellulose Nanocrystals/Graphene Oxide Composite for the Adsorption and Removal of Levofloxacin Hydrochloride Antibiotic from Aqueous Solution. R. Soc. Open Sci. 2020, 7, 200857, doi:10.1098/rsos.200857.
- Li, J.; Tao, J.; Ma, C.; Yang, J.; Gu, T.; Liu, J. Carboxylated Cellulose Nanofiber/Montmorillonite Nanocomposite for the Removal of Levofloxacin Hydrochloride Antibiotic from Aqueous Solutions. RSC Adv. 2020, 10, 42038–42053, doi:10.1039/d0ra08987g.
- Gao, H.; Wang, Y.; Afolabi, M.A.; Xiao, D.; Chen, Y. Incorporation of Cellulose Nanocrystals into Graphene Oxide Membranes for Efficient Antibiotic Removal at High Nutrient Recovery. ACS Appl. Mater. Interfaces 2021, 13, 14102–14111, doi:10.1021/acsami.0c20652.
- Gopal, G.; Natarajan, C.; Mukherjee, A. Adsorptive Removal of Fluoroquinolone Antibiotics Using Green Synthesized and Highly Efficient Fe Clay Cellulose-Acrylamide Beads. Environ. Technol. Innov. 2022, 28, 102783, doi:10.1016/j.eti.2022.102783.
- Li, N.; Gao, B.; Yang, R.; Yang, H. Simple Fabrication of Carboxymethyl Cellulose and κ-Carrageenan Composite Aerogel with Efficient Performance in Removal of Fluoroquinolone Antibiotics from Water. Front. Environ. Sci. Eng. 2022, 16, doi:10.1007/s11783-022-1568-x.
- Cantero-López, P.; Godoy, M.; Oyarce, E.; Pizarro, G.D.C.; Xu, C.; Willför, S.; Yañez, O.; Sánchez, J. Removal of Nafcillin Sodium Monohydrate from Aqueous Solution by Hydrogels Containing Nanocellulose: An Experimental and Theoretical Study. J. Mol. Liq. 2022, 347, 117946, doi:10.1016/j.molliq.2021.117946.
- Hu, Y.; Chen, C.; Yang, L.; Cui, J.; Hao, Q.; Sun, D. Handy Purifier Based on Bacterial Cellulose and Ca-Montmorillonite Composites for Efficient Removal of Dyes and Antibiotics. Carbohydr. Polym. 2019, 222, 115017, doi:10.1016/j.carbpol.2019.115017.
- Lu, L.; Liu, M.; Chen, Y.; Luo, Y. Effective Removal of Tetracycline Antibiotics from Wastewater Using Practically Applicable Iron(III)-Loaded Cellulose Nanofibres. R. Soc. Open Sci. 2021, 8, 210336, doi:10.1098/rsos.210336.
- Juengchareonpoon, K.; Wanichpongpan, P.; Boonamnuayvitaya, V. Graphene Oxide and Carboxymethylcellulose Film Modified by Citric Acid for Antibiotic Removal. J. Environ. Chem. Eng. 2021, 9, 104637, doi:10.1016/j.jece.2020.104637.
- Juengchareonpoon, K.; Boonamnuayvitaya, V.; Wanichpongpan, P. Kinetics and Isotherms of Oxytetracycline Adsorption on Β‐cyclodextrin/Carboxymethylcellulose Hydrogel Films. Aquac. Res. 2019, 50, 3412–3419, doi:10.1111/are.14299.
- ALOthman, Z.A.; Badjah, A.Y.; Alharbi, O.M.L.; Ali, I. Copper Carboxymethyl Cellulose Nanoparticles for Efficient Removal of Tetracycline Antibiotics in Water. Environ. Sci. Pollut. Res. Int. 2020, 27, 42960–42968, doi:10.1007/s11356-020-10189-1.
- Abd El-Monaem, E.M.; Omer, A.M.; Khalifa, R.E.; Eltaweil, A.S. Floatable Cellulose Acetate Beads Embedded with Flower-like Zwitterionic Binary MOF/PDA for Efficient Removal of Tetracycline. J. Colloid Interface Sci. 2022, 620, 333–345, doi:10.1016/j.jcis.2022.04.010.
- Saldarriaga, J.F.; Montoya, N.A.; Estiati, I.; Aguayo, A.T.; Aguado, R.; Olazar, M. Unburned Material from Biomass Combustion as Low-Cost Adsorbent for Amoxicillin Removal from Wastewater. J. Clean. Prod. 2021, 284, 124732, doi:10.1016/j.jclepro.2020.124732.
- Yang, C.; Wang, L.; Yu, Y.; Wu, P.; Wang, F.; Liu, S.; Luo, X. Highly Efficient Removal of Amoxicillin from Water by Mg-Al Layered Double Hydroxide/Cellulose Nanocomposite Beads Synthesized through in-Situ Coprecipitation Method. Int. J. Biol. Macromol. 2020, 149, 93–100, doi:10.1016/j.ijbiomac.2020.01.096.
- Sayen, S.; Ortenbach-López, M.; Guillon, E. Sorptive Removal of Enrofloxacin Antibiotic from Aqueous Solution Using a Ligno-Cellulosic Substrate from Wheat Bran. J. Environ. Chem. Eng. 2018, 6, 5820–5829, doi:10.1016/j.jece.2018.08.012.
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 2014, 344, doi:10.1126/science.1246843.
- Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers (Basel) 2020, 12, 81, doi:10.3390/polym12010081.
- Li, F.; Wang, X.; Yuan, T.; Sun, R. A Lignosulfonate-Modified Graphene Hydrogel with Ultrahigh Adsorption Capacity for Pb(Ii) Removal. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 11888–11896, doi:10.1039/c6ta03779h.
- Jiang, P.; Li, Q.; Gao, C.; Lu, J.; Cheng, Y.; Zhai, S.; An, Q.; Wang, H. Fractionation of Alkali Lignin by Organic Solvents for Biodegradable Microsphere through Self-Assembly. Bioresour. Technol. 2019, 289, 121640, doi:10.1016/j.biortech.2019.121640.
- Grishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Pizzi, A.; Celzard, A. New Tannin–Lignin Aerogels. Ind. Crops Prod. 2013, 41, 347–355, doi:10.1016/j.indcrop.2012.04.052.
- Domínguez-Robles, J.; Peresin, M.S.; Tamminen, T.; Rodríguez, A.; Larrañeta, E.; Jääskeläinen, A.-S. Lignin-Based Hydrogels with “Super-Swelling” Capacities for Dye Removal. Int. J. Biol. Macromol. 2018, 115, 1249–1259, doi:10.1016/j.ijbiomac.2018.04.044.
- Agustin, M.B.; Mikkonen, K.S.; Kemell, M.; Lahtinen, P.; Lehtonen, M. Systematic Investigation of the Adsorption Potential of Lignin- and Cellulose-Based Nanomaterials towards Pharmaceuticals. Environ. Sci. Nano 2022, 9, 2006–2019, doi:10.1039/d2en00186a.
- Gao, B.; Li, P.; Yang, R.; Li, A.; Yang, H. Investigation of Multiple Adsorption Mechanisms for Efficient Removal of Ofloxacin from Water Using Lignin-Based Adsorbents. Sci. Rep. 2019, 9, doi:10.1038/s41598-018-37206-1.
- Gong, L.; Wu, H.; Shan, X.; Li, Z. Facile Fabrication of Phosphorylated Alkali Lignin Microparticles for Efficient Adsorption of Antibiotics and Heavy Metal Ions in Water. J. Environ. Chem. Eng. 2021, 9, 106574, doi:10.1016/j.jece.2021.106574.
- Gao, B.; Chang, Q.; Cai, J.; Xi, Z.; Li, A.; Yang, H. Removal of Fluoroquinolone Antibiotics Using Actinia-Shaped Lignin-Based Adsorbents: Role of the Length and Distribution of Branched-Chains. J. Hazard. Mater. 2021, 403, 123603, doi:10.1016/j.jhazmat.2020.123603.
- Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. Preparation of Eucommia Ulmoides Lignin-Based High-Performance Biochar Containing Sulfonic Group: Synergistic Pyrolysis Mechanism and Tetracycline Hydrochloride Adsorption. Bioresour. Technol. 2021, 329, 124856, doi:10.1016/j.biortech.2021.124856.
- Xiang, W.; Zhang, X.; Luo, J.; Li, Y.; Guo, T.; Gao, B. Performance of Lignin Impregnated Biochar on Tetracycline Hydrochloride Adsorption: Governing Factors and Mechanisms. Environ. Res. 2022, 215, 114339, doi:10.1016/j.envres.2022.114339.