JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 69 No 2 (2024): Journal of the Chilean Chemical Society
Original Research Papers

DETERMINATION OF pKa AND pKb FROM ELECTRONIC PROPERTIES DERIVED FROM CONCEPTUAL DENSITY FUNCTIONAL THEORY (cDFT)

José Muñoz - Espinoza
Universidad de Chile
Germán Barriga-González
Metropolitan University of Educational Sciences
Published January 10, 2025
Keywords
  • Acidity,
  • Basicity,
  • Nucleophilicity,
  • Electrophilicity,
  • Multilinear Correlation
How to Cite
Muñoz - Espinoza, J., Barriga-González, G., & Jiménez-Meza, S. (2025). DETERMINATION OF pKa AND pKb FROM ELECTRONIC PROPERTIES DERIVED FROM CONCEPTUAL DENSITY FUNCTIONAL THEORY (cDFT). Journal of the Chilean Chemical Society, 69(2), 6104-6109. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2645

Abstract

In the present work we apply a semiempirical method capable of calculating the pka and pkb values of a series of organic acids and bases through their electronic properties. This multilinear model, analogous to the one introduced by Kamlet-Taft, relates acid-base properties such as HBA and HBD to the regional electrophilicity and nucleophilicity derived from cDFT. To test the model, it was applied to a series of mono and dicarboxylic acids, as well as aliphatic/cyclic and heterocyclic amines, showing us that the model is only functional when the series of compounds present similar characteristics such as functional groups. Based on the regionalization of the electrophilicity and nucleophilicity, it can be observed that the acid-base characteristics are not exclusive to limited regions of the molecules, but that these present a bifunctional character that shifts to the relative characteristics of acid and/or base according to the global distribution of the electronic density.

26451.jpg

References

  1. Löfqvist, J. Journal of Insect Physiology, 22(10), 331–1346 (1976)
  2. Tutusaus, O., Ni, Ch., Szymczak, N. K. Journal of the American Chemical Society, 135(9), 3403–3406 (2013)
  3. Lémery, L. Mém. Acad. R. Sci. (Paris), 1717 ; pp. 31–51, 122–146
  4. Rouelle, G. F. Mémoire sur les sels neutres. Mém. Acad. R. Sci. (Paris), 1754 ; pp. 572–588
  5. Bell, R.P. Acids, Bases, and the Nature of the Hydrogen Ion. In: The Proton in Chemistry. Springer, Boston, MA.
  6. Arrhenius, S. Philosophical Magazine Series 5, 41(251), 237–276 (1896)
  7. Brønsted, J. N. Einige Bemerkungen über den Begriff der Säuren und Basen, 42(8), 718–728 (1923)
  8. Lowry, T.M. chemistry and industry, 42(3), 43–47 (1923)
  9. Lewis, G.N. Valence and the Structure of Atoms and Molecules. American Chemical Monograph Series, the Chemical Catalog Co., Inc., New York, 1923 ; pp. 141-142
  10. Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. 1(1-6), 104–113 (1934).
  11. Fukui, K., Yonezawa, T., Shingu, H. The Journal of Chemical Physics, 20(4), 722–725 (1952)
  12. Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A., Leito, I. The Journal of Physical Chemistry A, 120(20), 3663-3669, (2016)
  13. Paresh Chandra, R., Das Kumar, P. The Journal of Physical Chemistry, 99(51), 17891–17895, (1995)
  14. Kütt, A., Selberg, S., Kaljurand, I., Tshepelevitsh, S., Heering, A., Darnell, A., Kaupmees, K., Piirsalu, M., Leito, I. Tetrahedron Letters, 59(42), 3738-3748, (2018)
  15. Bernhardsen, Ida M., Krokvik, I. R.T., Perinu, C., Pinto, D., Jens, K. J., Knuutila, H. K. International Journal of Greenhouse Gas Control, 68, 68–76, (2018)
  16. Manallack, David T. Perspectives in Medicinal Chemistry, 1, 25-38, (2007)
  17. Petukh, M., Stefl, S. Alexov, E. Current Pharmaceutical Design, 19(23), 4182–4190, (2013)
  18. Ullrich, K, J. Specificity of transporters for ‘organic anions’ and ‘organic cations’ in the kidney, 1197(1), 45–62, (1994)
  19. Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B. Analytical Chemistry Insights, 8, 53–71, (2013)
  20. Romero, R., Salgado, P. R., Soto, C., Contreras, D., Melin, V. Frontiers in Chemistry, 6, 208, (2018)
  21. Gift, A. D., Stewart, S. M., Kwete Bokashanga, P. Journal of Chemical Education, 89(11), 1458–1460, (2012)
  22. Jia, Z., Du, D., Zhou, Z., Zhang, A., & Hou, R. Chemical Physics Letters, 439(4-6), 374–380, (2007)
  23. Thapa, B. & Schlegel, H. B. The Journal of Physical Chemistry A, 120(28), 5726–5735, (2016)
  24. Dutra, F. R., Silva, C. de S., & Custodio, R. The Journal of Physical Chemistry A, 125(1), 65–73, (2020)
  25. Sandoval-Lira, J., Mondragón-Solórzano, G., Lugo-Fuentes, L. I., & Barroso-Flores, J. Journal of Chemical Information and Modeling, 60, 1445-1452, (2020)
  26. Dahmani, R., Manachou, M., Belaidi, S., Chtita, S., & Boughdiri, S. New Journal of Chemistry, 45(3), 1253–1261, (2021)
  27. Panayiotou, C., Mastrogeorgopoulos, S., & Hatzimanikatis, V. The Journal of Chemical Thermodynamics, 110, 3–15, (2017)
  28. Kamlet, M. J., Doherty, R. M., Abraham, M. H., Marcus, Y., & Taft, R. W. The Journal of Physical Chemistry, 92(18), 5244–5255, (1988)
  29. Kamlet, M. J., & Taft, R. W. Journal of the American Chemical Society, 98(2), 377–383, (1976)
  30. Taft, R. W., & Kamlet, M. J. Journal of the American Chemical Society, 98(10), 2886–2894, (1976)
  31. Parr, R. G., Weitao, Y. Density – Functional Theory of Atoms and Molecules. Oxford University Press, USA Chap. 4 – 5, 1994 ; pp. 70 – 104
  32. Pearson, R. G. Journal of Chemical Sciences, 117(5), 369–377, (2005)
  33. Parr, R. G., Szentpály, L. v., & Liu, S. Journal of the American Chemical Society, 121(9), 1922–1924, (1999)
  34. Parr, R. G., & Yang, W. Journal of the American Chemical Society, 106(14), 4049–4050, (1984)
  35. Hohenberg, P., & Kohn, W. Physical Review, 136(3B), B864–B871, (1964)
  36. Janak, J. F. Physical Review B, 18(12), 7165–7168, (1978)
  37. Contreras, R., Andres, J., Safont, V. S., Campodonico, P., Santos, J. G. The Journal of Physical Chemistry A, 107(29), 5588–5593, (2003)
  38. Politzer, P., Murray, J. S., Bulat, F. A. A review, 16(11), 1731–1742, (2010)
  39. Weiß, N., Schmidt, C. H., Thielemann, G., Heid, E., Schröder, C., & Spange, S. Physical Chemistry Chemical Physics, 23(2), 1616–1626, (2021)
  40. Vela, A., & Gazquez, J. L. Journal of the American Chemical Society, 112(4), 1490–1492, (1990)
  41. Simón-Manso, Y., & Fuentealba, P. The Journal of Physical Chemistry A, 102(11), 2029–2032, (1998)
  42. Contreras, R. R., Fuentealba, P., Galván, M., & Pérez, P. Chemical Physics Letters, 304(5-6), 405–413, (1999)
  43. Cerda-Monje, A., Ormazábal-Toledo, R., Cárdenas, C., Fuentealba, P., & Contreras, R. The Journal of Physical Chemistry B, 118(13), 3696–3701, (2014)
  44. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. Gaussian 09, Revision E.01; Wallingford, CT, 2013
  45. Dawson, R.M.C., Elliot, D.C., Elliot, W.H. and Jones, K. M. Data for biochemical research. Clarendon Press, Oxford, (1986)
  46. Brown, H. C., McDaniel, D. H., & Hafiiger, O. Determination of Organic Structures by Physical Methods," ed. by Braude E. A. and Nachod, F. C., Academic Press, New York, 1959
  47. Lide, D. R. Handbook of Chemistry and Physics. Edition 84°, CRC press, 2004
  48. Chakkamalayath, J., Kuttay, C. R. S., & Ghosh, S. K. The Journal of Physical Chemistry A, 124, 3770-3777, (2020)
  49. Barret, R. Therapeutical Chemistry, 21–51 (2018)
  50. Siegel, A. F. & Wagner, M. R. Chapter 12 - Multiple Regression: Predicting One Variable from Several Others, Editor(s): Andrew F. Siegel, Michael R. Wagner, Practical Business Statistics (Eighth Edition), Academic Press, 2022 ; pp. 371-431.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP