JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 69 No 2 (2024): Journal of the Chilean Chemical Society
Reviews

Antioxidant activity and phytoactive compounds related to biological effects present in native southern Chilean plants: A review.

Susana Alfaro
Universidad Adventista de Chile UNACH
Published January 10, 2025
Keywords
  • Keywords: Antioxidant Activity, Polyphenols, Free Radicals, Native Chilean Medicinal Plants
How to Cite
Alfaro, S. (2025). Antioxidant activity and phytoactive compounds related to biological effects present in native southern Chilean plants: A review. Journal of the Chilean Chemical Society, 69(2), 6115-6128. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2640

Abstract

Studies carried out in different native Chilean plants demonstrate that compounds found in both fruits and leaves have the capacity to decrease oxidative cellular damage in humans, thus contributing to the prevention of chronic illnesses such as diabetes, cancer, and arterial hypertension. Information on native Chilean medicinal plants was extracted from the Scopus, Science Direct, Google Scholar, and PubMed databases. Plants with relevant antioxidant activity were selected based on their chemical compounds and their use as native-flora research materials in Chile. Provitamin A, carotenoids and vitamins C and E are the main compounds found in the studied species. Several analyses also show the presence of polyphenolic and alkaloid compounds with proven capacity to increase antioxidant activity. Therefore, such native species should be of interest for the food, cosmetic, and pharmaceutical industries, as safer natural antioxidant compounds are crucial for the prevention of human illnesses and for replacing the synthetic antioxidants currently in use (BHT, BHA).

The present review aims to provide up-to-date information on the traditional uses of native plants in popular medicine, and to present evidence concerning the antioxidant activity of the studied plant species and their relationship with the active principles found.

 

2640.jpg

References

  1. M. Montes, T. Wilkomirsky, and L. Valenzuela, Plantas Medicinales. Concepción: Ediciones Universidad de Concepción, 1992.
  2. H. Vogel et al., “Antioxidant properties and TLC characterization of four Chilean Haplopappus-species known as bailahuén.,” J Ethnopharmacol, vol. 97, no. 1, pp. 97–100, Feb. 2005, doi: 10.1016/j.jep.2004.10.027.
  3. H. Speisky and B. K. Cassels, “Boldo and boldine: an emerging case of natural drug development,” Pharmacol Res, vol. 29, no. 1, pp. 1–12, Jan. 1994, doi: 10.1016/1043-6618(94)80093-6.
  4. L. Velázquez, J. Quiñones, R. Díaz, M. Pateiro, J. M. Lorenzo, and N. Sepúlveda, “Natural antioxidants from endemic leaves in the elaboration of processed meat products: Current status,” Antioxidants, vol. 10, no. 9, pp. 1–18, 2021, doi: 10.3390/antiox10091396.
  5. S. Kohli et al., “In-vitro evaluation of the effectiveness of polyphenols based strawberry extracts for dental bleaching,” Sci Rep, vol. 13, no. 1, p. 4181, Mar. 2023, doi: 10.1038/s41598-023-31125-6.
  6. M. J. Simirgiotis and G. Schmeda-Hirschmann, “Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry,” J Chromatogr A, vol. 1217, no. 4, pp. 443–449, Jan. 2010, doi: 10.1016/j.chroma.2009.11.014.
  7. G. Schmeda-Hirschmann, J. A. Rodriguez, C. Theoduloz, S. L. Astudillo, G. E. Feresin, and A. Tapia, “Free-radical Scavengers and Antioxidants from Peumus boldus Mol. (‘Boldo’),” Free Radic Res, vol. 37, no. 4, pp. 447–452, Jan. 2003, doi: 10.1080/1071576031000090000.
  8. P. O’Brien, C. Carrasco-Pozo, and H. Speisky, “Boldine and its antioxidant or health-promoting properties,” Chem Biol Interact, vol. 159, no. 1, pp. 1–17, Jan. 2006, doi: 10.1016/j.cbi.2005.09.002.
  9. E. Alarcón, A. M. Campos, A. Edwards, E. Lissi, and C. López-Alarcón, “Antioxidant capacity of herbal infusions and tea extracts: A comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies,” Food Chem, vol. 107, no. 3, pp. 1114–1119, Apr. 2008, doi: 10.1016/j.foodchem.2007.09.035.
  10. N. Backhouse et al., “Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae,” J Ethnopharmacol, vol. 116, no. 2, pp. 263–269, Mar. 2008, doi: 10.1016/j.jep.2007.11.025.
  11. I. M. Villaseñor, A. P. Canlas, K. M. Faustino, and K. G. Plana, “Evaluation of the bioactivity of triterpene mixture isolated from Carmona retusa (Vahl.) Masam leaves,” J Ethnopharmacol, vol. 92, no. 1, pp. 53–56, May 2004, doi: 10.1016/j.jep.2004.01.017.
  12. M. C. Aguirre et al., “Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae,” Bioorg Med Chem, vol. 14, no. 16, pp. 5673–5677, 2006, doi: 10.1016/j.bmc.2006.04.021.
  13. M. Avello and E. Pastene, “Actividad Antioxidante de infusos de Ugni Molinae Turcz (‘Murtilla’).,” Bol Latinoam Caribe Plantas Med Aromat, vol. 4, no. 002, pp. 33–39, 2005.
  14. F. Ávila, C. Theoduloz, C. López-Alarcón, E. Dorta, and G. Schmeda-Hirschmann, “Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells,” Oxid Med Cell Longev, vol. 2017, pp. 1–13, 2017, doi: 10.1155/2017/9808520.
  15. S. Miranda-Rottmann, A. A. Aspillaga, D. D. Pérez, L. Vasquez, A. L. F. Martinez, and F. Leighton, “Juice and Phenolic Fractions of the Berry Aristotelia chilensis Inhibit LDL Oxidation in Vitro and Protect Human Endothelial Cells against Oxidative Stress,” J Agric Food Chem, vol. 50, no. 26, pp. 7542–7547, Dec. 2002, doi: 10.1021/jf025797n.
  16. M. Rubilar, M. Pinelo, M. Ihl, E. Scheuermann, J. Sineiro, and M. J. Nuñez, “Murta Leaves (Ugni molinae Turcz) as a Source of Antioxidant Polyphenols,” J Agric Food Chem, vol. 54, no. 1, pp. 59–64, Jan. 2006, doi: 10.1021/jf051571j.
  17. J. Cheel, C. Theoduloz, J. A. Rodríguez, P. D. S. Caligari, and G. Schmeda-Hirschmann, “Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chandler,” Food Chem, vol. 102, no. 1, pp. 36–44, 2007, doi: 10.1016/j.foodchem.2006.04.036.
  18. A. Ruiz et al., “Isolation and Structural Elucidation of Anthocyanidin 3,7-β- O -Diglucosides and Caffeoyl-glucaric Acids from Calafate Berries,” J Agric Food Chem, vol. 62, no. 29, pp. 6918–6925, Jul. 2014, doi: 10.1021/jf5012825.
  19. J. Echeverría and H. Niemeyer, “Alkaloids from the native flora of Chile: a review,” Bol Latinoam Caribe Plantas Med Aromat, vol. 11, no. 4, pp. 291–305, 2012.
  20. J. B. Harborne, “Plants Phenolics,” in Secondary Plant Products, 1st ed., E. A. Bell and B. V. Charlwood, Eds., Springer-Verlag Berlin Heidelberg, 1980, pp. 329–395.
  21. Y. Lin, J. Fang, Z. Zhang, M. A. Farag, Z. Li, and P. Shao, “Plant flavonoids bioavailability in vivo and mechanisms of benefits on chronic kidney disease: a comprehensive review,” Phytochemistry Reviews, vol. 0123456789, Sep. 2022, doi: 10.1007/s11101-022-09837-w.
  22. M. Gallon, M. Cortés, J. Gil Gonzalez, A. Lahlou, and J. L. Guil-Guerrero, “Influence of Storage Variables on the Antioxidant and Antitumor Activities, Phenolic Compounds and Vitamin C of an Agglomerate of Andean Berries,” SSRN Electronic Journal, vol. 9, no. September 2022, 2022, doi: 10.2139/ssrn.4220980.
  23. I. Urquiaga and F. Leighton, “Plant Polyphenol Antioxidants and Oxidative Stress,” Biol Res, vol. 33, no. 2, pp. 55–64, 2000, doi: 10.4067/S0716-97602000000200004.
  24. A. Crozier et al., “Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability,” Biol Res, vol. 33, no. 2, pp. 79–88, 2000, doi: 10.4067/S0716-97602000000200007.
  25. J.-M. Rouanet et al., “Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters,” Food Chem, vol. 118, no. 2, pp. 266–271, Jan. 2010, doi: 10.1016/j.foodchem.2009.04.116.
  26. H. Kamei et al., “Suppression of Tumor Cell Growth by Anthocyanins In Vitro,” Cancer Invest, vol. 13, no. 6, pp. 590–594, Jan. 1995, doi: 10.3109/07357909509024927.
  27. N. P. Seeram, Y. Zhang, and M. G. Nair, “Inhibition of Proliferation of Human Cancer Cells and Cyclooxygenase Enzymes by Anthocyanidins and Catechins,” Nutr Cancer, vol. 46, no. 1, pp. 101–106, May 2003, doi: 10.1207/S15327914NC4601_13.
  28. L. Y. Foo, Y. Lu, A. B. Howell, and N. Vorsa, “The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro,” Phytochemistry, vol. 54, no. 2, pp. 173–181, May 2000, doi: 10.1016/S0031-9422(99)00573-7.
  29. A. B. Howell, “Bioactive compounds in cranberries and their role in prevention of urinary tract infections,” Mol Nutr Food Res, vol. 51, no. 6, pp. 732–737, Jun. 2007, doi: 10.1002/mnfr.200700038.
  30. A. B. Howell, J. D. Reed, C. G. Krueger, R. Winterbottom, D. G. Cunningham, and M. Leahy, “A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity,” Phytochemistry, vol. 66, no. 18, pp. 2281–2291, Sep. 2005, doi: 10.1016/j.phytochem.2005.05.022.
  31. T. F. Barberán, “Los polifenoles de los alimentos y la salud,” Alimentación, nutrición y salud, vol. 10, no. 2, pp. 41–53, 2003.
  32. B. W. Bolling, J. B. Blumberg, and C.-Y. Oliver Chen, “The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins,” Food Chem, vol. 123, no. 4, pp. 1040–1047, Dec. 2010, doi: 10.1016/j.foodchem.2010.05.058.
  33. A. A. van der Sluis, M. Dekker, A. de Jager, and W. M. F. Jongen, “Activity and Concentration of Polyphenolic Antioxidants in Apple: Effect of Cultivar, Harvest Year, and Storage Conditions,” J Agric Food Chem, vol. 49, no. 8, pp. 3606–3613, Aug. 2001, doi: 10.1021/jf001493u.
  34. S. Alfaro, A. Mutis, and R. Palma, “Influence of genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit,” J Soil Sci Plant Nutr, vol. 13, no. 1, pp. 67–78, 2013.
  35. L. Astudillo, J. a Rodriguez, and G. Schmeda-Hirschmann, “Gastroprotective activity of oleanolic acid derivatives on experimentally induced gastric lesions in rats and mice,” Journal of Pharmacy and Pharmacology, vol. 54, no. 4, pp. 583–588, Apr. 2002, doi: 10.1211/0022357021778718.
  36. S. Molares and A. Ladio, “Ethnobotanical review of the Mapuche medicinal flora: Use patterns on a regional scale,” J Ethnopharmacol, vol. 122, no. 2, pp. 251–260, Mar. 2009, doi: 10.1016/j.jep.2009.01.003.
  37. M. Heinrich, A. Ankli, B. Frei, C. Weimann, and O. Sticher, “Medicinal plants in Mexico: healers’ consensus and cultural importance,” Soc Sci Med, vol. 47, no. 11, pp. 1859–1871, Dec. 1998, doi: 10.1016/S0277-9536(98)00181-6.
  38. A. Gironés-Vilaplana, N. Baenas, D. Villaño, H. Speisky, C. García-Viguera, and D. A. Moreno, “Evaluation of Latin-American fruits rich in phytochemicals with biological effects,” J Funct Foods, vol. 7, pp. 599–608, Mar. 2014, doi: 10.1016/j.jff.2013.12.025.
  39. M. Rubilar et al., “Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): Sources of Antioxidant Compounds and α-Glucosidase/α-Amylase Inhibitors,” J Agric Food Chem, vol. 59, no. 5, pp. 1630–1637, Mar. 2011, doi: 10.1021/jf103461k.
  40. J. Cheel, C. Theoduloz, J. a. Rodríguez, P. D. S. Caligari, and G. Schmeda-Hirschmann, “Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chandler,” Food Chem, vol. 102, no. 1, pp. 36–44, Jan. 2007, doi: 10.1016/j.foodchem.2006.04.036.
  41. M. J. Simirgiotis, C. Theoduloz, P. D. S. Caligari, and G. Schmeda-Hirschmann, “Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes,” Food Chem, vol. 113, no. 2, pp. 377–385, Mar. 2009, doi: 10.1016/j.foodchem.2008.07.043.
  42. R. Torres, C. Mascayano, C. N????ez, B. Modak, and F. Faini, “Coumarins of haplopappus multifolius and derivative as inhibitors of lox: Evaluation in-vitro and docking studies,” Journal of the Chilean Chemical Society, vol. 58, no. 4, pp. 2027–2030, 2013.
  43. R. Torres, F. Faini, F. D. Monache, and G. D. Monache, “Two new O-geranyl coumarins from the resinous exudate of Haplopappus multifolius,” Fitoterapia, vol. 75, no. 1, pp. 5–8, Jan. 2004, doi: 10.1016/j.fitote.2003.06.003.
  44. F. Faini, C. Labbé, R. Torres, J. M. Rodilla, L. Silva, and F. D. Monache, “New phenolic esters from the resinous exudate of Haplopappus taeda,” Fitoterapia, vol. 78, no. 7–8, pp. 611–613, 2007, doi: 10.1016/j.fitote.2007.06.006.
  45. F. Faini, R. Torres, J. M. Rodilla, C. Labbé, C. Delporte, and F. Jaña, “Chemistry and bioactivity of Haplopappus remyanus (‘bailahuen’), a chilean medicinal plant,” J Braz Chem Soc, vol. 22, no. 12, pp. 2344–2349, Dec. 2011, doi: 10.1590/S0103-50532011001200015.
  46. Y. S. Lau, X. Y. Tian, Y. Huang, D. Murugan, F. I. Achike, and M. R. Mustafa, “Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism,” Biochem Pharmacol, vol. 85, no. 3, pp. 367–375, Feb. 2013, doi: 10.1016/j.bcp.2012.11.010.
  47. N. H. Turgut, H. Gungor, M. Ekici, M. A. Erdogan, M. O. Karayigit, and H. Kara, “Boldine provides protective effect against nephrotoxicity induced by cisplatin in Wistar rats: Role of oxidative stress, inflammation and caspase-3,” Biocell, vol. 46, no. 6, pp. 2111–2122, 2022, doi: 10.32604/biocell.2022.020383.
  48. N. Quezada, M. Asencio, J. M. Valle, J. M. Aguilera, and B. Gómez, “Antioxidant Activity of Crude Extract, Alkaloid Fraction, and Flavonoid Fraction from Boldo (Peumus boldus Molina) Leaves,” J Food Sci, vol. 69, no. 5, pp. C371–C376, May 2006, doi: 10.1111/j.1365-2621.2004.tb10700.x.
  49. C. V. Klimaczewski et al., “Antioxidant activity of Peumus boldus extract and alkaloid boldine against damage induced by Fe(II)–citrate in rat liver mitochondria in vitro,” Ind Crops Prod, vol. 54, pp. 240–247, Mar. 2014, doi: 10.1016/j.indcrop.2013.11.051.
  50. C. Soto, E. Caballero, E. Pérez, and M. E. Zúñiga, “Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile,” Food and Bioproducts Processing, vol. 92, no. 3, pp. 328–333, Jul. 2014, doi: 10.1016/j.fbp.2013.06.002.
  51. J. Fernández, P. Lagos, P. Rivera, and E. Zamorano-Ponce, “Effect of boldo ( Peumus boldus Molina) infusion on lipoperoxidation induced by cisplatin in mice liver,” Phytotherapy Research, vol. 23, no. 7, pp. 1024–1027, Jul. 2009, doi: 10.1002/ptr.2746.
  52. C. Otero et al., “Biochemical characterization of Peumus boldus fruits: Insights of its antioxidant properties through a theoretical approach,” Food Chem, vol. 370, no. September 2021, p. 131012, Feb. 2022, doi: 10.1016/j.foodchem.2021.131012.
  53. P. Velásquez, M. I. Sandoval, A. Giordano, M. Gómez, and G. Montenegro, “Nutritional Composition and Polyphenolic Content of Edible Peumus boldus Mol. Fruits.,” Cienc Investig Agrar, vol. 44, no. 1, pp. 1–11, Apr. 2017, doi: 10.7764/rcia.v44i1.1684.
  54. B. González, H. Vogel, I. Razmilic, and E. Wolfram, “Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest.,” Ind Crops Prod, vol. 76, pp. 158–165, 2015, doi: 10.1016/j.indcrop.2015.06.038.
  55. L. Rodríguez et al., “A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia chilensis Stuntz (Maqui),” Molecules, vol. 27, no. 19, 2022, doi: 10.3390/molecules27196147.
  56. M. T. Escribano-Bailón, C. Alcalde-Eon, O. Muñoz, J. C. Rivas-Gonzalo, and C. Santos-Buelga, “Anthocyanins in berries of Maqui [Aristotelia chilensis (Mol.) Stuntz],” Phytochemical Analysis, vol. 17, no. 1, pp. 8–14, Jan. 2006, doi: 10.1002/pca.872.
  57. B. Salehi et al., “Ethnopharmacology, Phytochemistry and Biological Activities of Native Chilean Plants,” Curr Pharm Des, vol. 27, no. 7, pp. 953–970, 2020, doi: 10.2174/1381612826666201124105623.
  58. L. Velázquez et al., “Maqui (Aristotelia chilensis (Mol.) Stuntz): A Natural Antioxidant to Improve Quality of Meat Patties,” Antioxidants, vol. 11, no. 7, 2022, doi: 10.3390/antiox11071405.
  59. V. Romanucci et al., “Bioactive Compounds of Aristotelia chilensis Stuntz and their Pharmacological Effects,” Curr Pharm Biotechnol, vol. 17, no. 6, pp. 513–523, Apr. 2016, doi: 10.2174/1389201017666160114095246.
  60. A. Gironés-Vilaplana, P. Mena, C. García-Viguera, and D. A. Moreno, “A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice,” LWT - Food Science and Technology, vol. 47, no. 2, pp. 279–286, Jul. 2012, doi: 10.1016/j.lwt.2012.01.020.
  61. M. Peña-Cerda et al., “Phenolic composition and antioxidant capacity of Ugni molinae Turcz. leaves of different genotypes,” Food Chem, vol. 215, no. 15, pp. 219–227, Jan. 2017, doi: 10.1016/j.foodchem.2016.07.159.
  62. J. López, A. Vega-Gálvez, A. Rodríguez, E. Uribe, and C. Bilbao-Sainz, “Murta (Ugni molinae Turcz.): A review on chemical composition, functional components and biological activities of leaves and fruits,” Chilean Journal of Agricultural and Animal Sciences, vol. 34, no. 1, 2018, doi: 10.4067/s0719-38902018005000205.
  63. V. Bifani, C. Ramírez, M. Ihl, M. Rubilar, A. García, and N. Zaritzky, “Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films,” LWT - Food Science and Technology, vol. 40, no. 8, pp. 1473–1481, Oct. 2007, doi: 10.1016/j.lwt.2006.03.011.
  64. R. I. Castro, P. Ramos, C. Parra-Palma, and L. Morales-Quintana, “Ugni molinae Fruit as a Source of Bioactive Compounds with Good Quality Traits,” Biomed Res Int, vol. 2021, 2021, doi: 10.1155/2021/6683877.
  65. M. Junqueira-Gonçalves, L. Yáñez, C. Morales, M. Navarro, R. A. Contreras, and G. Zúñiga, “Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni molinae Turcz.) Fruits. Assessment of Antioxidant and Antibacterial Activity,” Molecules, vol. 20, no. 4, pp. 5698–5713, Mar. 2015, doi: 10.3390/molecules20045698.
  66. S. Alfaro, A. Mutis, A. Quiroz, I. Seguel, and E. Scheuermann, “Effects of Drying Techniques on Murtilla Fruit Polyphenols and Antioxidant Activity,” J Food Res, vol. 3, no. 5, pp. 73–82, 2014, doi: 10.5539/jfr.v3n5p73.
  67. E. Scheuermann et al., “Effects of Packaging and Preservation Treatments on the Shelf Life of Murtilla Fruit (Ugni molinae Turcz) in Cold Storage,” Packaging Technology and Science, vol. 27, no. 3, pp. 241–248, Mar. 2014, doi: 10.1002/pts.2014.
  68. C. Delporte et al., “Analgesic activity of Ugni molinae (murtilla) in mice models of acute pain,” J Ethnopharmacol, vol. 112, no. 1, pp. 162–165, 2007, doi: 10.1016/j.jep.2007.02.018.
  69. M. Suwalsky, P. Orellana, M. Avello, F. Villena, and C. P. Sotomayor, “Human erythrocytes are affected in vitro by extracts of Ugni molinae leaves,” Food and Chemical Toxicology, vol. 44, no. 8, pp. 1393–1398, Aug. 2006, doi: 10.1016/j.fct.2006.03.003.
  70. J. Torres-Vega, S. Gómez-Alonso, J. Pérez-Navarro, J. Alarcón-Enos, and E. Pastene-Navarrete, “Polyphenolic compounds extracted and purified from buddleja globosa hope (Buddlejaceae) leaves using natural deep eutectic solvents and centrifugal partition chromatography,” Molecules, vol. 26, no. 8, 2021, doi: 10.3390/molecules26082192.
  71. P. Zamorano-Aguilar, M. Morales, Y. Rivillas, J. López, and B. A. Rojano, “Antioxidant activity and cytotoxic effect of Chilean Buddleja globosa (matico) and Ribes magellanicum (zarzaparrilla) flower extracts,” Acta Scientiarum Polonorum, Hortorum Cultus, vol. 19, no. 6, pp. 59–70, 2020, doi: 10.24326/ASPHC.2020.6.5.
  72. M. Fuentes, C. Sepúlveda, M. Alarcón, I. Palomo, and E. Fuentes, “Buddleja globosa (matico) prevents collagen-induced platelet activation by decreasing phospholipase C-gamma 2 and protein kinase C phosphorylation signaling,” J Tradit Complement Med, vol. 8, no. 1, pp. 66–71, 2018, doi: 10.1016/j.jtcme.2017.02.005.
  73. N. Backhouse et al., “Antinociceptive activity of Buddleja globosa (matico) in several models of pain,” J Ethnopharmacol, vol. 119, no. 1, pp. 160–165, Sep. 2008, doi: 10.1016/j.jep.2008.06.022.
  74. N. Backhouse et al., “Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae,” J Ethnopharmacol, vol. 116, no. 2, pp. 263–269, Mar. 2008, doi: 10.1016/j.jep.2007.11.025.
  75. M. F. Chamorro et al., “Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia,” Molecules, vol. 24, no. 18, p. 3331, Sep. 2019, doi: 10.3390/molecules24183331.
  76. M. E. Arena, P. D. Postemsky, and N. R. Curvetto, “Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. berries in relation to light intensity and fertilization,” Sci Hortic, vol. 218, pp. 63–71, 2017, doi: 10.1016/j.scienta.2017.02.004.
  77. A. Ruiz et al., “Flavonols, Alkaloids, and Antioxidant Capacity of Edible Wild Berberis Species from Patagonia,” J Agric Food Chem, vol. 62, no. 51, pp. 12407–12417, Dec. 2014, doi: 10.1021/jf502929z.
  78. L. Manosalva, A. Mutis, J. Díaz, A. Urzúa, V. Fajardo, and A. Quiroz, “Identification of isoquinoline alkaloids from berberis microphylla by HPLC ESI-MS/MS,” Bol Latinoam Caribe Plantas Med Aromat, vol. 13, no. 4, pp. 324–335, 2014.
  79. E. Mariangel, M. Reyes-Diaz, W. Lobos, E. Bensch, H. Schalchli, and P. Ibarra, “The antioxidant properties of calafate (Berberis microphylla) fruits from four different locations in southern Chile,” Cienc Investig Agrar, vol. 40, no. 1, pp. 161–170, Apr. 2013, doi: 10.4067/S0718-16202013000100014.
  80. A. Ruiz et al., “Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile,” J Agric Food Chem, vol. 58, no. 10, pp. 6081–6089, May 2010, doi: 10.1021/jf100173x.
  81. A. Hoffmann, Flora silvestre de Chile : zona araucana : una guía ilustrada para la identificación de las especies de plantas leñosas del sur de Chile (entre el río Maule y el seno de Reloncaví), 4a., vol. 1. Santiago, 1997.
  82. A. Srivastava, P. Tandon, A. P. Ayala, and S. Jain, “Solid state characterization of an antioxidant alkaloid boldine using vibrational spectroscopy and quantum chemical calculations,” Vib Spectrosc, vol. 56, no. 1, pp. 82–88, May 2011, doi: 10.1016/j.vibspec.2010.08.001.
  83. T. Boeing et al., “Gastroprotective effect of the alkaloid boldine: Involvement of non-protein sulfhydryl groups, prostanoids and reduction on oxidative stress,” Chem Biol Interact, vol. 327, no. March, p. 109166, Aug. 2020, doi: 10.1016/j.cbi.2020.109166.
  84. A. A. Refaie et al., “Hepatoprotective Impact of Boldo (Peumus Boldus) Extract against Azoxystrobin Induced DNA Damage, Gene Expression Modulation, Biochemical and Histopathological Alterations Mediated-ROS Generation in Male Rats,” Egypt J Chem, vol. 65, no. 8, pp. 687–698, 2022, doi: 10.21608/ejchem.2022.120306.5401.
  85. C. Ferrante et al., “Phenolic Content and Antimicrobial and,” Antibiotics, vol. 9, p. 783, 2020.
  86. A. Valenzuela, S. Nieto, B. K. Cassels, and H. Speisky, “Inhibitory effect of boldine on fish oil oxidation,” J Am Oil Chem Soc, vol. 68, no. 12, pp. 935–937, Dec. 1991, doi: 10.1007/BF02657538.
  87. J. M. Del Valle, C. Godoy, M. Asencio, and J. M. Aguilera, “Recovery of antioxidants from boldo (Peumus boldus M.) by conventional and supercritical CO2 extraction,” Food Research International, vol. 37, pp. 695–702, 2004, doi: 10.1016/j.foodres.2003.03.001.
  88. L. Lara-Fernández, H. De Garza-Toledo, J. E. Wong-Paz, R. Belmares, R. Rodríguez-Herrera, and C. N. Aguilar, “Separation conditions and evaluation of antioxidant properties of boldo (Peumus boldus) extracts,” J Med Plant Res, vol. 7, no. 15, pp. 911–917, 2013, doi: 10.5897/JMPR13.2562.
  89. W. Naser, “The cosmetic effects of various natural biofunctional ingredients against skin aging: A review,” International Journal of Applied Pharmaceutics, vol. 13, no. 1, pp. 10–18, 2021, doi: 10.22159/ijap.2021v13i1.39806.
  90. G. Silva-Aguayo et al., “Essential oil of Peumus boldus Molina against the nematode Haemonchus contortus (L3) and three stored cereal insect pests,” Chil J Agric Res, vol. 81, no. 3, pp. 390–397, 2021, doi: 10.4067/S0718-58392021000300390.
  91. G. Schmeda-Hirschmann, C. Quispe, and B. González, “Phenolic Profiling of the South American ‘Baylahuen’ Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS,” Molecules, vol. 20, no. 1, pp. 913–928, Jan. 2015, doi: 10.3390/molecules20010913.
  92. G. Schmeda-Hirschmann, C. Quispe, and B. González, “Phenolic Profiling of the South American ‘Baylahuen’ Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS,” Molecules, vol. 20, no. 1, pp. 913–928, Jan. 2015, doi: 10.3390/molecules20010913.
  93. C. Zdero, F. Bohlmann, and H. M. Niemeyer, “Friedolabdanes and other constituents from chilean Haplopappus species,” Phytochemistry, vol. 30, no. 11, pp. 3669–3677, 1991, doi: 10.1016/0031-9422(91)80089-J.
  94. N. Ünal and V. Okatan, “Effects of drought stress treatment on phytochemical contents of strawberry varieties,” Sci Hortic, vol. 316, no. February, p. 112013, 2023, doi: 10.1016/j.scienta.2023.112013.
  95. N. Araya et al., “Formulation of water-soluble Buddleja globosa Hope extracts and characterization of their antimicrobial properties against Pseudomonas aeruginosa,” Front Pharmacol, vol. 13, no. November, pp. 1–11, Nov. 2022, doi: 10.3389/fphar.2022.921511.
  96. S. Khan, H. Ullah, and L. Zhang, “Bioactive constituents form Buddleja species,” Pak J Pharm Sci, vol. 32, no. 2, pp. 721–741, 2019.
  97. L. Letelier, C. Gaete-Eastman, P. Peñailillo, M. A. Moya-León, and R. Herrera, “Southern Species From the Biodiversity Hotspot of Central Chile: A Source of Color, Aroma, and Metabolites for Global Agriculture and Food Industry in a Scenario of Climate Change,” Front Plant Sci, vol. 11, no. July, pp. 1–16, 2020, doi: 10.3389/fpls.2020.01002.
  98. P. J. Houghton, P. J. Hylands, A. Y. Mensah, A. Hensel, and A. M. Deters, “In vitro tests and ethnopharmacological investigations: Wound healing as an example,” J Ethnopharmacol, vol. 100, no. 1–2, pp. 100–107, Aug. 2005, doi: 10.1016/j.jep.2005.07.001.
  99. M. Suwalsky, J. Duguet, and H. Speisky, “An In Vitro Study of the Antioxidant and Antihemolytic Properties of Buddleja globosa (Matico),” J Membr Biol, Apr. 2017, doi: 10.1007/s00232-017-9955-0.
  100. M. E. Letelier et al., “DPPH and oxygen free radicals as pro-oxidant of biomolecules,” Toxicology in Vitro, vol. 22, no. 2, pp. 279–286, Mar. 2008, doi: 10.1016/j.tiv.2007.08.002.
  101. M. E. Letelier, P. A. Iturra-montecinos, and C. A. Gallardo-garrido, “Herbal extracts differentially inhibit oxidative effects caused by the biotransformation of nifurtimox , nitrofurantoin and acetaminophen on rat liver microsomes,” Bol Latinoam Caribe Plantas Med Aromat, vol. 16, no. 2, pp. 88–98, 2017.
  102. E. R. Carmona, N. Benito, T. Plaza, and G. Recio-Sánchez, “Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope,” Green Chem Lett Rev, vol. 10, no. 4, pp. 250–256, 2017, doi: 10.1080/17518253.2017.1360400.
  103. J. Vera et al., “Antioxidant Activity as an Indicator of the Efficiency of Plant Extract-Mediated Synthesis of Zinc Oxide Nanoparticles,” Antioxidants, vol. 12, no. 4, 2023, doi: 10.3390/antiox12040784.
  104. G. Darrow, The Strawberry: History, Breeding, and Physiology, 1 Ed. New York, 1966.
  105. C. E. Finn, J. B. Retamales, G. A. Lobos, and J. F. Hancock, “The chilean strawberry (Fragaria chiloensis): Over 1000 years of domestication,” HortScience, vol. 48, no. 4, pp. 418–421, 2013.
  106. C. K. Weebadde et al., “Using a linkage mapping approach to identify QTL for day-neutrality in the octoploid strawberry,” Plant Breeding, vol. 127, no. 1, pp. 94–101, Oct. 2007, doi: 10.1111/j.1439-0523.2007.01430.x.
  107. R. A. Fadri, S. Salvia, R. Novita, Y. Muchrida, S. Kembaryanti Putri, and F. Violalita, “Phenolics Total and Antioxidant Activity of Strawberry (Fragaria chiloensis),” Int J Adv Sci Eng Inf Technol, vol. 5, no. 6, p. 392, 2015, doi: 10.18517/ijaseit.5.6.591.
  108. M. J. Simirgiotis, C. Theoduloz, P. D. S. Caligari, and G. Schmeda-Hirschmann, “Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes,” Food Chem, vol. 113, no. 2, pp. 377–385, Mar. 2009, doi: 10.1016/j.foodchem.2008.07.043.
  109. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, and J. Sochor, “Bioactive Compounds and Antioxidant Activity in Different Types of Berries,” Int J Mol Sci, vol. 16, no. 10, pp. 24673–24706, Oct. 2015, doi: 10.3390/ijms161024673.
  110. F. Noriega, C. Mardones, S. Fischer, C. Garciá-Viguera, D. A. Moreno, and M. D. López, “Seasonal changes in white strawberry: Effect on aroma, phenolic compounds and its biological activity,” J Berry Res, vol. 11, no. 1, pp. 103–118, 2021, doi: 10.3233/JBR-200585.
  111. A. Salvatierra, P. Pimentel, M. A. Moya-León, and R. Herrera, “Biosynthesis of flavonoids in achenes of Fragaria chiloensis ssp. chiloensis,” Bol Latinoam Caribe Plantas Med Aromat, vol. 13, no. 4, pp. 406–414, Dec. 2004.
  112. L. Morales-Quintana and P. Ramos, “Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review,” Food Research International, vol. 119, no. October 2018, pp. 769–776, 2019, doi: 10.1016/j.foodres.2018.10.059.
  113. M. Reyes-Farias et al., “Chilean Native Fruit Extracts Inhibit Inflammation Linked to the Pathogenic Interaction Between Adipocytes and Macrophages,” J Med Food, vol. 18, no. 5, pp. 601–608, May 2014, doi: 10.1089/jmf.2014.0031.
  114. S. Thomas-Valdés, C. Theoduloz, F. Jiménez-Aspee, and G. Schmeda-Hirschmann, “Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica),” Food Research International, vol. 123, no. January, pp. 106–114, 2019, doi: 10.1016/j.foodres.2019.04.039.
  115. E. Genskowsky, L. A. Puente, J. A. Pérez-Álvarez, J. Fernández-López, L. A. Muñoz, and M. Viuda-Martos, “Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry,” J Sci Food Agric, vol. 96, no. December 2015, pp. 4235–4242, 2016, doi: 10.1002/jsfa.7628.
  116. A. M. Connor, J. J. Luby, J. F. Hancock, S. Berkheimer, and E. J. Hanson, “Changes in Fruit Antioxidant Activity among Blueberry Cultivars during Cold-Temperature Storage,” J Agric Food Chem, vol. 50, no. 4, pp. 893–898, Feb. 2002, doi: 10.1021/jf011212y.
  117. I. M. Heinonen, A. S. Meyer, and E. N. Frankel, “Antioxidant Activity of Berry Phenolics on Human Low-Density Lipoprotein and Liposome Oxidation,” J Agric Food Chem, vol. 46, no. 10, pp. 4107–4112, Oct. 1998, doi: 10.1021/jf980181c.
  118. P. Morazzoli and E. Bombardelli, “Vaccinium myrtillus L.,” Fitoterapia, vol. 67, no. 1, pp. 3–29, 1996.
  119. J. R. Sparrow et al., “A2E-epoxides Damage DNA in Retinal Pigment Epithelial Cells,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18207–18213, May 2003, doi: 10.1074/jbc.M300457200.
  120. N. Katsube, K. Iwashita, T. Tsushida, K. Yamaki, and M. Kobori, “Induction of Apoptosis in Cancer Cells by Bilberry ( Vaccinium myrtillus ) and the Anthocyanins,” J Agric Food Chem, vol. 51, no. 1, pp. 68–75, Jan. 2003, doi: 10.1021/jf025781x.
  121. C. López de Dicastillo, F. Rodríguez, A. Guarda, and M. J. Galotto, “Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications,” Carbohydr Polym, vol. 136, pp. 1052–1060, Jan. 2016, doi: 10.1016/j.carbpol.2015.10.013.
  122. K. A. Crisóstomo-Ayala et al., “Comparative Study of Metabolomic Profile and Antioxidant Content of Adult and In Vitro Leaves of Aristotelia chilensis,” Plants, vol. 11, no. 1, p. 37, Dec. 2021, doi: 10.3390/plants11010037.
  123. C. Céspedes, J. Jakupovic, M. Silva, and W. Watson, “Indole alkaloids from Aristotelia chilensis,” Phytochemistry, vol. 29, no. 4, pp. 1354–1356, Jan. 1990, doi: 10.1016/0031-9422(90)85469-V.
  124. He, S. Valcic, B. N. Timmermann, and G. Montenegro, “Indole Alkaloids from Aristotelia chilensis (Mol.) Stuntz,” International Journal of Pharmacognosy, vol. 35, no. 3, p. S. 215-217, 1997.
  125. K. Rodríguez et al., “Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying,” LWT - Food Science and Technology, vol. 65, pp. 537–542, Jan. 2016, doi: 10.1016/j.lwt.2015.08.050.
  126. H. F. Chiu, K. Venkatakrishnan, O. Golovinskaia, and C. K. Wang, “Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence,” Molecules, vol. 26, no. 7, 2021, doi: 10.3390/molecules26072090.
  127. O. Golovinskaia and C. K. Wang, “Review of functional and pharmacological activities of berries,” Molecules, vol. 26, no. 13, 2021, doi: 10.3390/molecules26133904.
  128. O. Golovinskaia and C. K. Wang, “The hypoglycemic potential of phenolics from functional foods and their mechanisms,” Food Science and Human Wellness, vol. 12, no. 4, pp. 986–1007, 2023, doi: 10.1016/j.fshw.2022.10.020.
  129. O. Muñoz and F. Ramos, “Quantitative analysis of phytosterols in Aristotelia chilensis (Maqui) leaves using GC/MS,” Int Food Res J, vol. 23, no. 2, pp. 822–826, 2016.
  130. C. L. Céspedes, M. El-Hafidi, N. Pavon, and J. Alarcon, “Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui,” Food Chem, vol. 107, no. 2, pp. 820–829, Mar. 2008, doi: 10.1016/j.foodchem.2007.08.092.
  131. C. T. da Costa, D. Horton, and S. A. Margolis, “Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography–mass spectrometry and capillary electrophoresis,” J Chromatogr A, vol. 881, no. 1–2, pp. 403–410, Jun. 2000, doi: 10.1016/S0021-9673(00)00328-9.
  132. M. M. Giusti, L. E. Rodrı, D. Griffin, and R. E. Wrolstad, “Electrospray and Tandem Mass Spectroscopy As Tools for Anthocyanin Characterization,” J. Agric. Food. Chem., vol. 47, no. 11, pp. 4657–4664, 1999, doi: 10.1021/jf981242+.
  133. J. E. Brauch, M. Buchweitz, R. M. Schweiggert, and R. Carle, “Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice,” Food Chem, vol. 190, pp. 308–316, 2016, doi: 10.1016/j.foodchem.2015.05.097.
  134. A. Gironés-Vilaplana, P. Valentão, P. B. Andrade, F. Ferreres, D. A. Moreno, and C. García-Viguera, “Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential,” Food Chem, vol. 134, no. 4, pp. 2090–2096, Oct. 2012, doi: 10.1016/j.foodchem.2012.04.010.
  135. A. Ruiz, E. Pastene, C. Vergara, D. Von Baer, M. Avello, and C. Mardones, “Hydroxycinnamic acid derivatives and flavonol profiles of maqui (Aristotelia chilensis) fruits,” Journal of the Chilean Chemical Society, vol. 61, no. 1, pp. 2792–2796, 2016, doi: 10.4067/S0717-97072016000100010.
  136. J. E. Brauch, L. Reuter, J. Conrad, H. Vogel, R. M. Schweiggert, and R. Carle, “Characterization of anthocyanins in novel Chilean maqui berry clones by HPLC–DAD–ESI/MSn and NMR-spectroscopy,” Journal of Food Composition and Analysis, vol. 58, pp. 16–22, May 2017, doi: 10.1016/j.jfca.2017.01.003.
  137. L. E. Rojo et al., “In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis),” Food Chem, vol. 131, no. 2, pp. 387–396, Mar. 2012, doi: 10.1016/j.foodchem.2011.08.066.
  138. I. Quispe-Fuentes, A. Vega-Gálvez, and V. Campos-Requena, “Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology,” Antioxidants, vol. 6, no. 1, p. 10, Feb. 2017, doi: 10.3390/antiox6010010.
  139. R. Lucas-Gonzalez, S. Navarro-Coves, J. A. Pérez-Álvarez, J. Fernández-López, L. A. Muñoz, and M. Viuda-Martos, “Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry ( Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion,” Ind Crops Prod, vol. 94, pp. 774–782, Dec. 2016, doi: 10.1016/j.indcrop.2016.09.057.
  140. D. Hernández-Prieto, P. S. Fernández, V. Agulló, C. García-Viguera, and J. A. Egea, “Bioactive Compounds in Plasma as a Function of Sex and Sweetener Resulting from a Maqui-Lemon Beverage Consumption Using Statistical and Machine Learning Techniques,” Int J Mol Sci, vol. 24, no. 3, p. 2140, Jan. 2023, doi: 10.3390/ijms24032140.
  141. G. Montenegro, Chile , nuestra flora útil : guía de plantas de uso apícola , en medicina folklórica , artesanal y ornamental. Santiago, 2000.
  142. J. Zin and C. Weiss, La salud por medio de las plantas medicinales, Novena. Santiago, Chile.: Editorial Don Bosco, 2006.
  143. M. Avello, E. Pastene, A. Barriga, M. Bittner, E. Ruiz, and J. Becerra, “Chemical properties and assessment of the antioxidant capacity of leaf extracts from populations of ugni molinae growing in continental Chile and in Juan fernandez archipelago,” International Journal of Pharmacognosy and Phytochemical Research, vol. 6, no. 4, pp. 746–752, 2014.
  144. M. A. Avello, E. R. Pastene, E. D. Bustos, M. L. Bittner, and J. A. Becerra, “Variation in phenolic compounds of Ugni molinae populations and their potential use as antioxidant supplement,” Revista Brasileira de Farmacognosia, vol. 23, no. 1, pp. 44–50, Jan. 2013, doi: 10.1590/S0102-695X2012005000122.
  145. L. E. Goity et al., “An HPLC-UV and HPLC-ESI-MS based method for identification of anti- inflammatory triterpenoids from the extracts of Ugni molinae,” Bol Latinoam Caribe Plantas Med Aromat, vol. 12, no. 1, pp. 108–116, 2013.
  146. L. E. Goity et al., “An HPLC-UV and HPLC-ESI-MS based method for identification of anti- inflammatory triterpenoids from the extracts of Ugni molinae,” Bol Latinoam Caribe Plantas Med Aromat, vol. 12, no. 1, pp. 108–116, 2013.
  147. C. Shene, A. K. Reyes, M. Villarroel, J. Sineiro, M. Pinelo, and M. Rubilar, “Plant location and extraction procedure strongly alter the antimicrobial activity of murta extracts,” European Food Research and Technology, vol. 228, no. 3, pp. 467–475, Jan. 2009, doi: 10.1007/s00217-008-0954-3.
  148. L. Puente-Díaz, K. Ah-Hen, A. Vega-Gálvez, R. Lemus-Mondaca, and K. Di Scala, “Combined Infrared-Convective Drying of Murta ( Ugni molinae Turcz) Berries: Kinetic Modeling and Quality Assessment,” Drying Technology, vol. 31, no. 3, pp. 329–338, Feb. 2013, doi: 10.1080/07373937.2012.736113.
  149. M. Reyes-Farias et al., “Extracts of Chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages,” J Funct Foods, vol. 27, pp. 69–83, Dec. 2016, doi: 10.1016/j.jff.2016.08.052.
  150. A. Reyes, V. Bubnovich, R. Bustos, M. Vásquez, R. Vega, and E. Scheuermann, “Comparative Study of Different Process Conditions of Freeze Drying of ‘Murtilla’ Berry,” Drying Technology, vol. 28, no. 12, pp. 1416–1425, Nov. 2010, doi: 10.1080/07373937.2010.482687.
  151. A. Reyes, A. Evseev, A. Mahn, V. Bubnovich, R. Bustos, and E. Scheuermann, “Effect of operating conditions in freeze-drying on the nutritional properties of blueberries,” Int J Food Sci Nutr, vol. 62, no. 3, pp. 303–306, May 2011, doi: 10.3109/09637486.2010.534078.
  152. J. López, A. Vega-Gálvez, C. Bilbao-Sainz, B.-S. Chiou, E. Uribe, and I. Quispe-Fuentes, “Influence of vacuum drying temperature on: Physico-chemical composition and antioxidant properties of murta berries,” J Food Process Eng, no. March, p. e12569, Apr. 2017, doi: 10.1111/jfpe.12569.
  153. T. R. Augusto-Obara, F. Pirce, E. Scheuermann, M. H. F. Spoto, and T. M. F. S. Vieira, “Antioxidant activity and sensory analysis of murtilla (Ugni molinae Turcz.) fruit extracts in an oil model system,” Grasas y Aceites, vol. 68, no. 1, p. 183, Mar. 2017, doi: 10.3989/gya.0810162.
  154. L. S. Gómez-Pérez, N. Moraga, K. S. Ah-Hen, A. Rodríguez, and A. Vega-Gálvez, “Dietary fibre in processed murta (Ugni molinae Turcz) berries: bioactive components and antioxidant capacity,” J Food Sci Technol, vol. 59, no. 8, pp. 3093–3101, Aug. 2022, doi: 10.1007/s13197-022-05416-1.
  155. S. Srivastava, M. Srivastava, A. Misra, G. Pandey, and A. Rawa, “Review article : A REVIEW ON BIOLOGICAL AND CHEMICAL DIVERSITY,” EXCLI J, no. 14, pp. 247–267, 2015.
  156. D. Alarcón, M. Paredes, D. Ramos, K. González, R. Díaz, and D. Núñez, “Los extractos acuoso y metanólico de Berberis darwinii H. (Berberidaceae) inhiben respuestas celulares innatas en monocitos humanos tratados in vitro,” Bol Latinoam Caribe Plantas Med Aromat, vol. 13, no. 1, pp. 81–91, 2014.
  157. J. L. Martínez, R. Torres, and M. A. Morales, “Hypotensive effect of O-methylisothalicberine, a bisbenzylisoquinoline alkaloid isolated fromBerberis chilensis on normotensive rats,” Phytotherapy Research, vol. 11, no. 3, pp. 246–248, May 1997, doi: 10.1002/(SICI)1099-1573(199705)11:3<246::AID-PTR62>3.0.CO;2-J.
  158. M. A. Morales, E. González, R. Torres, and J. L. Martínez, “Cardiodepressor effects of 7-O-demethylisothalicberine, bisbenzylisoquinoline alkaloid isolated from Berberis chilensis.,” Arch Med Res, vol. 24, no. 2, pp. 177–181, 1993.
  159. R. D. Enriz and M. L. Freile, “Structure-activity relationship of berberine and derivatives acting as antifungal compounds,” Anales de la Asociación Química Argentina, vol. 94, no. 1–3, pp. 113–119, 2006.
  160. M. L. Freile et al., “Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla,” Fitoterapia, vol. 74, no. 7–8, pp. 702–705, Dec. 2003, doi: 10.1016/S0367-326X(03)00156-4.
  161. S. I. Pitta-Alvarez, F. Medina-Bolivar, M. A. Alvarez, A. A. Scambatto, and P. L. Marconi, “In vitro shoot culture and antimicrobial activity of Berberis buxifolia Lam,” In Vitro Cellular & Developmental Biology - Plant, vol. 44, no. 6, pp. 502–507, Dec. 2008, doi: 10.1007/s11627-008-9136-z.
  162. J. E. Ramirez, R. Zambrano, B. Sep??lveda, E. J. Kennelly, and M. J. Simirgiotis, “Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-HR-ESI-ToF-MS,” Food Chem, vol. 176, pp. 106–114, 2015, doi: 10.1016/j.foodchem.2014.12.039.
  163. L. Manosalva, A. Mutis, A. Urzúa, V. Fajardo, and A. Quiroz, “Antibacterial Activity of Alkaloid Fractions from Berberis microphylla G. Forst and Study of Synergism with Ampicillin and Cephalothin,” Molecules, vol. 21, no. 1, p. 76, Jan. 2016, doi: 10.3390/molecules21010076.
  164. S. Radice and M. E. Arena, “Environmental effect on the leaf morphology and anatomy of Berberis microphylla G. Forst,” International Journal of Plant Biology, vol. 6, no. 1, pp. 1–7, Sep. 2015, doi: 10.4081/pb.2015.5677.
  165. L. R. Landrum, “Revision of Berberis (Berberidaceae) in Chile and adjacent southern Argentina,” Ann. Missouri Bot. Gard, vol. 86, no. 4, pp. 793–834, 1999.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP