JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 69 No 1 (2024): JCChemS
Original Research Papers

Improvement of Head-to-Tail RGD peptide Cyclization Efficiency Combining Low Temperature and Lithium Chloride

Adriana Gauna
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Fredys Sánches-Hoyos
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Maycol Huerta
Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello
Marcelo Kogan
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Eyleen Araya
Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello
Published October 6, 2024
Keywords
  • Cyclic(RGDfK),
  • head-to-tail cyclization,
  • Integrins,
  • peptide cyclization conditions,
  • Targeting
How to Cite
Gauna, A., Sánches-Hoyos, F., Huerta, M., Kogan, M., & Araya, E. (2024). Improvement of Head-to-Tail RGD peptide Cyclization Efficiency Combining Low Temperature and Lithium Chloride . Journal of the Chilean Chemical Society, 69(1), 6038-6041. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2639

Abstract

RGD-containing peptides (linear and cyclic) have been developed to target some types of cancer cells through interaction with the αvβ3 Integrin. Due to their reduced conformational freedom, cyclic peptides exhibit improved metabolic stability and binding affinity/specificity to their molecular targets. However, macrocyclization is considered a significant synthetic challenge that is affected by the ring size, peptide sequence, and reaction conditions, making tetra- and pentapeptides more difficult to cyclize. In this work, we report some optimized cyclization conditions for the obtention of a cyclic RGDfK peptide that combine the use of low reaction temperature and the addition of LiCl, a combination not yet reported that resulted in a reduction of the formation of oligomers and an improvement of the cyclization efficiency.

26391.jpg

References

  1. S.H. Joo. Biomol. Ther. 20, 19–26, (2012)
  2. M.E.G Moral, T.J. Siahaan. Curr Top. Med. Chem. 17(32), 3425-3443, (2017)
  3. X. Dou, T. Nomoto, H. Takemoto. Sci. Rep. 8, 8126, (2018)
  4. L. Zhao, X. Wen, W. Xu. J. Nucl. Med. 64(8), 1210-1217, (2023)
  5. H.J. Kim, S.J. You, D.H. Yang. Biomater. Sci. 8(15), 4334-4345 (2020)
  6. S.J. Bogdanowich-Knipp, S. Chakrabarti, T.D. Williams. J. Pept. Res. 53(5), 530-41 (1999)
  7. D. Lobeek, M. Rijpkema, S. Terry. Eur. J. Nucl. Med. Mol. Imaging. 47(11), 2647-2655 (2020)
  8. F. Debordeaux, L. Chansel-Debordeaux, J.B. Pinaquy. Nucl. Med. Biol. 62, 31-46, (2018)
  9. T.M. Cheng, W.J. Chang, H.Y. Chu. Cells. 10(7), 1684, (2121)
  10. S. Fu, X. Xu, Y. Ma. J. Drug. Target. 27(1), 1-11, (2019)
  11. J. Liu, X. Cheng, X. Tian. ACS. Med. Chem. Lett. 29(7), 896-900, (2019)
  12. K. Ahmad, E.J. Lee, S. Shaikh. Semin. Cancer. Biol. 69, 325-336 (2121)
  13. N. Li, S. Qiu, Y. Fang. Biology. 10(7), 688, (2121)
  14. M. Paradís-Bas, J. Tulla-Puche, F. Albericio. Chem. Soc. Rev. 7:45(3), 631-54, (2016)
  15. A. Thakkar, T.B. Trinh, D. Pei. ACS. Comb. Sci. 11;15(2), 120-9 (2013)
  16. J. Tang, Y. He, H. Chen. Chem. Sci. 8(6), 4565-4570, (2017)
  17. A. El-Faham, F. Albericio. Chem. Rev. 111, 6557-602, (2021)
  18. F.A. Robey. J. Pept. Res. 56(3), 115-20, (2000)
  19. A. Thaler, D. Seebach, F. Cardinaux. Helv. Chim. Acta. 74, 628–643, (1991)
  20. K. Arnold, B. Davied, R.L. Giles. Adv. Synth. Catal. 348, 813-820, (2006)
  21. F. Guzmán, A. Mónica, R. Tanya. Electron. J. Biotechnol. 64, 27-33 (2023)
  22. J.S. Davies. J. Pept. Sci. 9(8), 471-501, (2003)
  23. V. Martí-Centelles, M.D. Pandey, M. Burguete. Chem. Rev. 115(16), 8736-834 (2015)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP