- Nitrones,
- Free Radicals,
- SOMO,
- Reactivity
Copyright (c) 2023 SChQ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
In the present article, a theoretical and computational study was carried out on the reactivity and antioxidant capacity of a series of nitrone derivatives (hBNn) in the presence of the OH∙ radical. For the antioxidant characterization of these compounds, tools such as global and local reactivity indices were used, as well as thermodynamic aspects to obtain the most energetically stable product. In addition, the NBO analysis, which described the SOMO generated by the electron radical of the spin adduct hBNn-OH. The results obtained show that the nitrone derivatives studied present the antioxidant capacity of radical trapping, forming energetically stable spin adducts. In turn, the reactivity of the systems (nitrone and radical) shows their nucleophilic and electrophilic tendencies, allowing us to propose a reaction mechanism for these radical traps.
References
- V. Lobo, A. Patil, A. Phatak, & N. Chandra. Pharmacognosy reviews, 4(8), 118–126 (2010)
- W. R. Markesbery & J. M. Carney. Brain pathology (Zurich, Switzerland), 9(1), 133–146 (1990)
- M. Aslan & T. Ozben. Current Alzheimer research, 1(2), 111–119 (2004)
- M. Ebadi, S. K. Srinivasan, & M. D. Progress in neurobiology, 48(1), 1–19 (1996)
- G. Perry, A. Nunomura, K. Hirai, X. Zhu, M. Pérez, J. Avila, R. J. Castellani, C. S. Atwood, G. Aliev, L. M. Sayre, A. Takeda & M. A. Smith, M. A. Free radical biology & medicine, 33(11), 1475–1479 (2002)
- H. Kumar, H-W. Lim, SV. More, B-W. Kim, S. Koppula, IS Kim, D-K Choi. International Journal of Molecular Sciences, 13(8), 10478-10504 (2012)
- N. Gupta, K. Verma, S. Nalla, A. Kulshreshtha, R. Lall, & S. Prasad. Molecules (Basel, Switzerland), 25(22), 5390 (2020)
- A. ipak Gašparović. Free Radical Research in Cancer. Antioxidants (Basel, Switzerland), 9(2), 157 (2020)
- J. Krzemińska, M. Wronka, E. Młynarska, B. Franczyk & J. Rysz. Antioxidants (Basel, Switzerland), 11(1), 172 (2022)
- U. Asmat, K. Abad, & K. Ismail. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 24(5), 547–553 (2016)
- J.S. Johansen, A.K. Harris, D.J. Rychly et al. Cardiovasc Diabetol, 4, 5 (2005)
- P.D. Ray, B.W. Huang, & Y. Tsuji. Cellular signalling, 24(5), 981–990 (2012)
- M. C., Martínez & R. Andriantsitohaina, R. Antioxidants & redox signaling, 11(3), 669–702 (2009)
- Qun Chen, Edwin J. Vazquez, Shadi Moghaddas, Charles L. Hoppel, Edward J. Lesnefsky. Journal of Biological Chemistry, 278 (38), 36027-36031 (2003)
- I. V. Turko, S, Marcondes & F. Murad. Heart and circulatory physiology, 281(6), H2289–H2294 (2001)
- A. Ayala, M. F. Muñoz & S. Argüelles. Oxidative medicine and cellular longevity, 360438 (2014)
- D. A. Wink, R. W. Nims, J. E. Saavedra, W. E. Jr., Utermahlen & P. C. Ford. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6604–6608. (1994)
- T. Ramasarma. Current Science, 92(2), 184–191 (2007)
- S. E. Espinoza, H. Guo, N. Fedarko, A. DeZern, L. P. Fried, Q. L. Xue, S. Leng, B. Beamer & J. D. Walston, J. D. The journals of gerontology. Series A, Biological sciences and medical sciences, 63(5), 505–509 (2008)
- A. Nandi, L. J. Yan, C. K. Jana & N. Das. Oxidative medicine and cellular longevity, 9613090 (2019)
- J. Bouayed & T. Bohn. Oxidative medicine and cellular longevity, 3(4), 228–237 (2010)
- N. Liang, D. D. Kitts. Molecules, 19(11), 19180-19208 (2014)
- K. Bakhouche, Z. Dhaouadi, N. Jaidane & D. Hammoutène. Computational and Theoretical Chemistry, 1060, 58–65 (2015)
- G. Barriga-González, C. Aliaga, E. Chamorro, C. Olea-Azar, E. Norambuena, W. Porcal, M. González & H. Cerecetto. RSC advances, 10(66), 40127–40135 (2020)
- F. A. Villamena, C. M. Hadad, & J. L. Zweier, J. L. Journal of the American Chemical Society, 126(6), 1816–1829 (2004)
- D. Hadjipavlou-Litina, I. E. Głowacka, J. Marco-Contelles, D. G. Piotrowska. Antioxidants, 12, 36 (2023)
- D. Iriepa, I. López-Muñoz, F. Marco-Contelles, J., Hadjipavlou-Litina. Antioxidants, 11, 1575 (2022)
- R. A. Floyd, R. D. Kopke, C. H. Choi, S. B. Foster, S. Doblas & R. A. Towner. Free radical biology & medicine, 45(10), 1361–1374 (2008)
- R. G. Parr, W. Yang. Journal of the American Chemical Society, 106, 4049 – 4050 (1984)
- C. Morell, A. Grand, A. Toro-Labbé. Journal of Physical Chemistry A, 109, 205–212 (2005)
- E.D. Glendening, C. R. Landis, F. Weinhold. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1), 1 – 42 (2011)
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E. 01, Gaussian, Inc., Wallingford CT. (2013)
- M. A. Allodi, K. N. Kirschner & G. C. Shields. The journal of physical chemistry A, 112(30), 7064–7071 (2008)
- M-J. Lee, B-D. Lee. Applied Sciences, 12(5), 2479 (2022)
- R. Contreras, P. Fuentealba, M. Galván, P. Pérez. Chemical Physical Letter, 304(5-6), 405-413 (1999)
- P. Fuentealba, P. Pérez, R. Contreras. Journal of Chemical Physics, 113(7), 2544-2551 (2000)
- K. Fukui, T. Yonezawa & H. Shingu. The Journal of Chemical Physics, 20(4), 722–725 (1952)
- I. Fleming. Molecular orbitals and reactions of organic chemistry. 1st Edition. Wiley Publishing House. Chap. 3, 2004; pp. 127 – 143.
- F. Weinhold. Journal of computational chemistry, 33(30), 2363–2379 (2012)
- E. Glendening, J. Badenhoop, A. Reed, J. Carpenter, C. Bohmann, C. Morales, C. Landis, F. Weinhold. Journal of Computational Chemistry, 34(16), 1429 – 1437 (2013)
- G. A. Zhurko and D. A. Zhurko, “ChemCraft, Tool for Treatment of the Chemical Data.” http://www.chemcraftprog.com
- Y. Yamazaki, J. Naganuma & H. Gotoh. Scientific reports, 9(1), 20339 (2019)
- R. G. Parr, W. Yang. Density – Functional Theory of Atoms and Molecules. Oxford University Press, USA Chap. 4 – 5 1994; pp. 70 – 104
- P. Geerlings, F. De Proft & W. Langenaeker. Chemical Reviews, 103(5), 1793–1874 (2003)
- A. K. Chandra, M. T. Nguyen. International Journal of Molecular Sciences, 3(4), 310-323 (2002)
- J. Moc & J. M. Simmie. The Journal of Physical Chemistry A, 114(17), 5558–5564 (2010)
- A. M. Priya & S. Lakshmipathi. Journal of Physical Organic Chemistry, 30(12), e3713 (2017)
- A. K. Chandra, T. Uchimaru, M. Sugie, & A. Sekiya. Chemical Physics Letters, 318(1-3), 69–74 (2000)
- R. G. Pearson. Chemical Hardness: Applications from Molecules to Solids, Wiley-VCH Verlag GMBH: Weinheim. Chapter 4, 1997; pp. 99-124
- IUPAC. Compendium of Chemical Terminology (the “Gold Book”), 2nd ed.; McNaught, A. D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, 2017. http://goldbook.iupac.org/AT06996.html (accessed July 08, 2023)
- A. Kumar & M. D. Sevilla. The journal of physical chemistry. B, 122(1), 98–105 (2018)