JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 68 No 4 (2023): JCChemS
Original Research Papers

EFFECT OF ACIDITY CHANGES ON MOBILITY OF METALLIC TRACE ELEMENETS IN MAIPO RIVER SEDIMENTS

Sylvia Violeta Copaja
Facultad de Ciencias. Universidad de Chile
Bio
Sylvia Copaja
Universidad de chile
Gabriel Arriagada
Universidad de chile
Published December 15, 2024
Keywords
  • Key words: sediments, metallic trace elements, availability, heavy metals, AAS, acidity, RAC.
How to Cite
Copaja, S. V., Copaja, S., & Arriagada, G. (2024). EFFECT OF ACIDITY CHANGES ON MOBILITY OF METALLIC TRACE ELEMENETS IN MAIPO RIVER SEDIMENTS. Journal of the Chilean Chemical Society, 68(4), 6007-6017. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2474

Abstract

The mobility and availability of metallic trace elements in river sediments depends on their solubility and adsorption on colloidal fraction of sediment. Processes such as cation exchange, adsorption/desorption, precipitation/dissolution and complexation affects the distribution of metals between the water column and sediments, being responsible for their mobility and availability. Trace elements in sediments are retained in the matrix, the concentration of the soluble fraction is scarce, this depending both on the physical and chemical properties of the sediment and the nature of metal.

In this work we studied the effect of pH on the solubility of metallic trace elements in river sediments in order to evaluate their mobility into the water column.

Samples were collected in 3 sites of Maipo River basins: Angostura (Ang), Clarillo (Cla) and Puangue (Pu) recording sites by GPS coordinates. The sediments were characterized: pH, electric conductivity (EC), soluble organic carbon (SOC), total organic carbon (TOC), available P, carbonate and Mn, Al Fe oxides.

For determination of trace elements in total fraction in sediment, samples 0.25 mg, were digested in a microwave oven and determined by AAS. To study pH effect in release of metal mass of 2.5 g sediment was stirred for 24 h with 15 mL of solutions at pH 5.0; 4.0; 3.0; 2.0, which were prepared with nitric acid. Then all the samples were centrifuged, filtered and the respective metals measured by AAS.

The content of total metals indicates that the major metals on the 3 sites were Al and Fe , Pu site presents the lowest concentrations of these two metals, Zn, Cu and Mn are higher in Pu, Mn concentration in Pu is three times higher than Cla and Ang. Mo was not detected.

At pH = 2, the highest mobility was obtained according to the recoveries obtained. At pH 3, 4, 5 heavy metals are not mobilized or are obtained with very low recovery percentages. In all cases was Pu which presented the lowest recovery rates. Only Mn represents values of RAC with indicates high risk in Cla and Ang

2474.jpg

 

References

  1. DGA Informe para la Dirección general de aguas, Universidad de Chile. (2008). Primera parte CUENCA DEL RÍO CHOAPA. “Análisis de la composición físico química de sedimentos fluviales y su relación con la disponibilidad de metales en agua”.
  2. S. V.Copaja, V. R. Nuñez, G. S. Muñoz, G. L. González, I. Vila, D. Véliz. J. Chil. Chem. Soc., 60, 2649, (2016).
  3. J. A. Narváez, P. Richter, M. I. Total J. Chil. Chem. Soc. 52, 1261 (2007).
  4. A. Kabata-Pendias, H. Pendias. Trace element in Soils and Plants 3erd ed. CRC Press: Boca Raton, FL USA (2001).
  5. U. Forstner, W. Solomons. Envirom. Geol. 39, 90 (1999).
  6. D. Zabaski, C. I. Henry, Z. Zhung. and X. Zhang. Water, Air, Soil Pollunt 131, 261 (2001).
  7. Z. F. Chen, Y. F. Ding, X. Y. Jiang, H. J. Duan, X. L. Ruan, Z. H. Li, Y. P. Li, Ecotoxicol Environ Saf , 234, (2022).
  8. Z. Y. Li, Z. W. Ma, T. J. van der Kuijp, Z. W. Yuan, L. Huang, Sci Total Environ, 468, 843, (2014).
  9. M. Qu, J. Chen, B. Huang, Y. Zhao, Environ Pollut, 265 (Pt A), (2020b).
  10. H. Zhang, M. Gao, A. M. Song, J. j. Zhao, M. W. Song, M.W. Ecological Risk of Heavy Metals Pollution in Sediments of Beijiang River, pp. 1137-+, Hohhot, PEOPLES R CHINA (2012b).
  11. H. M. Valet, C. C. Hakenkamp, A. J. Boulton, J N Am Benthol Soc 12, 199340, (1993).
  12. R. H. Cranswick, P. G. Cook, S. Lamontagne, J Hydrol , 519, 1870, (2014).
  13. T. Datry, S. T. Larned, M. R. Scarsbrook, M.R. 2007. Freshwater Biol 52, 1452, (2007).
  14. J. X. Song, X. G. Yang, J. L. Zhang, Y. Q. Long, Y. Zhang, T. F. Zhang, Int J Environ Res 644 Public Health , 12, 8243, (2015).
  15. Y. Huang, C. Fu, Z. Li, F. Fang, W. J. Ouyang, J. S. Guo, Ecotoxicol Environ Saf , 185, (2019).
  16. X. Wei, L. F. Han, B. Gao, H. D. Zhou, J. Lu, X. H. Wan, Ecol Indic 61, 667, (2016).
  17. L. S. Miranda, G. A. Ayoko, P. Egodawatta, A. Goonetilleke,, J Hazard Mater 421,1010, (2022)..
  18. J. Liu, Y. J. Liu, Y. Liu, Z. Liu, Z. A. N. Zhang, Ecotoxicol Environ Saf , 164, 261, (2018 a).
  19. Miranda, L.S., Wijesiri, B., Ayoko, G.A., Egodawatta, P. and Goonetilleke, Water Res 202, (2021).
  20. S. V. Copaja, G. Muñoz, D. Véliz, Caren Vega-Retter, Journal of the Chilean Chemical Society, 68, 5787, (2023).
  21. J. Chira Fernandez, Rev. Inst. investig. Fac. minas metal cienc. geogr, 13, (2010).
  22. Yinxian Song, JunfengJi, Zhongfang Yang, Xuyin Yuan, Changping Mao, Ray L. Frost, Godwin A. Ayoko, Catena, 85, 81 (2011).
  23. S. V. Copaja, X. Molina, R. Tessada, J. Chil. Chem. Soc., 59, 2358, (2014).
  24. L. Ciadamidaro, P. Madejon, F. Camacho, E. Madejon, Soil Science 181, 1, (2016).
  25. S. V. Copaja, L. Mauro, C. Vega-Retter, D. Véliz, J. Chil. Chem. Soc., 65, 4783 (2020).
  26. E. T. Elliot, Soil Microbiology and Biochemistry, 50, 627, (1986).
  27. A. Simpson, E. Graeme, E. Batley, A. Chaslton, J. Sharyan, Handbook for Sediment Quality Assessment (2005).
  28. A. Sadzawka, M. A. Carrasco, R. Grez, M. L. Mora, H. Flores, A. Neuman, Métodos de Análisis de Suelos. Instituto de Investigaciones Agropecuarias, (INIA). Serie Actas INIA 34, 59, (2006).
  29. A. J. Metson, L- C- Blackemore, D. A. Rhoades. Methods for the determination of soil organic carbón: a review and application to New Zealand soils. New Zealand Journal of Science, 22, 295, (1979).
  30. O. P. Mehra, M. L. Jackson, Clays and Clay Minerals, 7, 317, (1960).
  31. S. V. Copaja, V. Núñez, D. Véliz, J. Chil. Chem. Soc., 58, 1986, (2014).
  32. NCh2058.Suelos-Determinaciòn del fósforo extraíble con solución de bicarbonato de sodio. Instituto Nacional de normalización, Santiago, Chile. 5 p (1999).
  33. Wu, Lili Wang, Ran Yang, Wenxing Hou, Shanwen Zhang, Xiaoyu Guo, Wenji ZhaoD Ecological Informatics, 70, 101700, (2022).
  34. . Fangueiro, A. Bermond, E. Santos, H. Carapuça. A. Duarte Talanta, 66, 844, (2005).
  35. Venkatramanan, S. Chung, T. Ramkumar, G. Gnanachandrasamy, S. Vasudevan, Sci. Total Environ, 4, 109, (2013).
  36. F. Burriel, F. Marti, S. Lucena-Conde, J. Arribas-Jimeno, Hernández Méndez (2003) Química Analítica Cualitativa (Décimo Sexta Edición) (Editorial PARANINFO) Madrid, España. Chapter XIX y XX.
  37. S. V. Copaja L. Mauro, C. Vega-Retter, D. Véliz, J. Chil. Chem. Soc., 65, 4778, (2020).
  38. G. Bartoli, S. Papa, E. Sagnella, A. Fioretto, Journal of environmental management, 95, S9-S14, (2012)..
  39. J. J. Martorell, Biodisponibilidad de metales pesados en dos ecosistemas acuáticos de la costa sur Atlántica Andaluza afectados por contaminación difusa”. Tesis Doctoral, Facultad de Ciencias, Departamento de Química Analítica, Universidad de Cadiz (2010).
  40. Bradl, H. Heavy Metals in the Environment: Origin, Interaction and Remediation, Volumen 6 de Interface Science and Technology, Academic Press, 2005.
  41. C. A. Flemming, J. T. Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water, Air, & Soil Pollution, 44, 143, (1989).
  42. C. A. Flemming, J. T. Trevors, Water, Air, & Soil Pollution, 44, 143, (19899.
  43. G. M. Hettiarachchi, G. M.Pierzynski, Journal of Environmental Quality, 31, 564, (2002).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP