Vol 68 No 2 (2023): Journal of the Chilean Chemical Society
Original Research Papers


Zawar Hussain
Food and Biotechnology Research Center, PCSIR Labs Complex Lahore 54600, Punjab Pakistan
Muhammad Jahangeer
Food and Biotechnology Research Center, PCSIR Labs Complex Lahore 54600, Punjab Pakistan
Abid Sarwar
Food and Biotechnology Research Center, Pakistan Council of Scientific Industrial Research (PCSIR) Lahore, 54600, Pakistan
Najeeb Ullah
Food and Biotechnology Research Center, PCSIR Labs Complex Lahore 54600, Punjab Pakistan
Metab Alharbi
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Tariq Aziz
Department of Agriculture, University of Ioannina, 47100 Arta, Greece
Abdulrahman Alshammari
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Published August 22, 2023
  • Antibacterial activity, Silver-nanoparticles, green synthesis, mint leaves, Gram negative and gram-positive bacteria.
How to Cite
Hussain, Z., Jahangeer, M., Sarwar, A., Ullah, N., Alharbi, M., Aziz, T., & Alshammari, A. (2023). SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES MEDIATED BY THE MENTHA PIPERITA LEAVES EXTRACT AND EXPLORATION OF ITS ANTIMICROBIAL ACTIVITIES. Journal of the Chilean Chemical Society, 68(2), 5865-5870. Retrieved from


Medicinal use of nanotechnology included a significant contribution from the antibacterial activity of biologically produced silver nanoparticles (AgNPs). Scientists investigated an efficient and environmentally friendly way to make silver nanoparticles by extracting Mentha piperita leaves as well as using their antimicrobial properties. Green synthesis method was used to produce AgNps from extract of mint plant and characterization was done by XRD, SEM and UV Visible Spectroscopy. A peak at 440 nm, which corresponds to the plasmon absorbance of silver nanoparticles, was evident in the UV-visible spectra of the solution containing AgNPs. Scanning electron microscopy observed that the nanoparticles were spherical in shape and ranged in size from 20 to 50 nm. The planes (111), (200), and (220) were found using the XRD patterns and value 0f 2θ:  38.50, 46.30 and 64.70 are observed. The silver nanoparticle's existence was verified by the face-centered cubic (FCC). Silver nanoparticles were found to have antibacterial efficacy against both gram-positive Staphylococcus and gram-negative bacteria such Pseudomonas aeruginosa, Klebsiella Aerogenes, Salmonella, Staphylococcus and E. coli. The antibacterial activity of silver nanoparticles against bacterial strains were observed using the agar well diffusion (AWD) method at three different concentrations (100µgml-1, 75 µgml-1, and 50 µgml-1). The zone of inhibition measured against the bacterial strains pseudomonas Aeruginosa, Klebsiella aerogenes, E. coli, Salmonella and Staphylococcus which were (18.7±1.25mm, 16.5±0.74mm, 14.0±1.25mm), (16.3±0.96mm, 14.5±0.76mm, 14.0±1.15mm), (16±0.76mm, 14.4±0.66mm, 14.0±1.15mm), (16.5±0.67mm, 14.5±0.23mm, 12.6±0.78mm) and (110.2±0.68mm, 8.8±0.20mm, 7.0±0.15mm). These nanoparticles' potent antibacterial properties may enable them to be employed as nanomedicines for a variety of gram-negative bacterial illness treatments.


  1. Hashim, N., Bashi, A. M., & Jasim, A. (2019, August). Biosynthesis of silver nanoparticles by mentha spicata ethanolic leaves extract and investigation the antibacterial activity. In AIP Conference Proceedings (Vol. 2144, No. 1, p. 040009). AIP Publishing LLC.
  2. Hayat, P.; Khan, I.; Rehman, A.; Jamil, T.; Hayat, A.; Rehman, M.U.; Ullah, N.; Sarwar, A.; Alharbi, A.A.; Dablool, A.S.; Daudzai, Z.; Alamri, A.S.; Alhomrani, M.; Aziz, T. Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules 2023, 28, 637.
  3. Naveed, M.; Batool, H.; Rehman, S.u.; Javed, A.; Makhdoom, S.I.; Aziz, T.; Mohamed, A.A.; Sameeh, M.Y.; Alruways, M.W.; Dablool, A.S.; Almalki, A.A.; Alamri, A.S.; Alhomrani, M. Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes 2022, 10, 1521.
  4. Khan, J.; Khurshid, S.; Sarwar, A.; Aziz, T.; Naveed, M.; Ali, U.; Makhdoom, S.I.; Nadeem, A.A.; Khan, A.A.; Sameeh, M.Y.; Alharbi, A.A.; Filimban, F.Z.; Rusu, A.V.; Göksen, G.; Trif, M. Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles—A Sustainable Approach towards Food Safety. Sustainability 2022, 14, 14255.
  5. Naveed, M.; Bukhari, B.; Aziz, T.; Zaib, S.; Mansoor, M.A.; Khan, A.A.; Shahzad, M.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; Alamri, A.S.; Alhomrani, M. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022, 27, 4226.
  6. Mani, R., Vijayakumar, P., Dhas, T. S., Velu, K., Inbakandan, D., Thamaraiselvi, C., ... & Utami, M. (2022). Synthesis of biogenic silver nanoparticles using butter fruit pulp extract and evaluation of their antibacterial activity against Providencia vermicola in Rohu. Journal of King Saud University-Science, 34(3), 101814.
  7. Saleem, A.; Afzal, M.; Naveed, M.; Makhdoom, S.I.; Mazhar, M.; Aziz, T.; Khan, A.A.; Kamal, Z.; Shahzad, M.; Alharbi, M.; Alshammari, A. HPLC, FTIR and GC-MS Analyses of Thymus vulgaris Phytochemicals Executing In Vitro and In Vivo Biological Activities and Effects on COX-1, COX-2 and Gastric Cancer Genes Computationally. Molecules 2022, 27, 8512.
  8. Chouhan, S., & Guleria, S. (2020). Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Materials Science for Energy Technologies, 3, 536-544.
  9. Abdelmoteleb, A., Valdez-Salas, B., Beltran-Partida, E., & Gonzalez-Mendoza, D. (2020). Green Synthesis of Silver Nanoparticles from Abronia villosa as an Alternative to Control of Pathogenic Microorganisms. Journal of Renewable Materials, 8(1), 69.
  10. Aygün, A., Gülbağça, F., Nas, M. S., Alma, M. H., Çalımlı, M. H., Ustaoglu, B., ... & Şen, F. (2020). Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: a novel approach in phytonanotechnology. Journal of pharmaceutical and biomedical analysis, 179, 113012.
  11. Novelles, M. D. C. T., Pérez, L. D., Ortega, A. R., Pita, B. A., Hernández, V. N., Travieso, A. G., & Pérez, O. P. (2021). Kinetics of the Cationic bio-reduction involved in the biosynthesis of silver nanoparticles from Leea Coccinea Leaves.
  12. Ahmadi, S., Fazilati, M., Mousavi, S. M., & Nazem, H. (2020). Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract. Journal of Experimental Nanoscience, 15(1), 363-380.
  13. Badawy, M. E., Lotfy, T. M., & Shawir, S. (2019). Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bulletin of the National Research Centre, 43(1), 1-14.
  14. Sultana, S., & Anusha, S. Biosynthesis And Characterization of Silver Nanoparticles Using Mint Leaf Extract And Its Antimicrobial And Antioxidant Activities.
  15. PATAILA, S., SINGH, A. K., JAIN, B., & THOOL, G. S. (2017). Green Synthesis of Silver Nanoparticles by Mint Leaves: A Suitable Catalyst for Oxidation of Metronidazole. Asian Journal of Chemistry, 29(11), 2409-2414.
  16. Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry, 50(10), 1032-1038.
  17. Halawani, E. M. (2016). Rapid biosynthesis method and characterization of silver nanoparticles using Zizyphus spina christi leaf extract and their antibacterial efficacy in therapeutic application. Journal of Biomaterials and Nanobiotechnology, 8(1), 22-35.
  18. Mojally, M., Sharmin, E., Obaid, N. A., Alhindi, Y., & Abdalla, A. N. (2022). Polyvinyl alcohol/corn starch/castor oil hydrogel films, loaded with silver nanoparticles biosynthesized in Mentha piperita leaves’ extract. Journal of King Saud University-Science, 34(4), 101879.
  19. Kumar, S., Taneja, S., Banyal, S., Singhal, M., Kumar, V., Sahare, S., ... & Choubey, R. K. (2021). Bio-synthesised silver nanoparticle-conjugated l-cysteine ceiled Mn: ZnS quantum dots for eco-friendly biosensor and antimicrobial applications. Journal of Electronic Materials, 50(7), 3986-3995.
  20. Kumari, S. C., Padma, P. N., & Anuradha, K. (2021). Green Silver Nanoparticles Embedded in Cellulosic Network for Fresh Food Packaging. Journal of Pure and Applied Microbiology.
  21. Barbinta-Patrascu, M. E., Ungureanu, C., Iordache, S. M., Iordache, A. M., Bunghez, I. R., Ghiurea, M., ... & Stamatin, I. (2014). Eco-designed biohybrids based on liposomes, mint–nanosilver and carbon nanotubes for antioxidant and antimicrobial coating. Materials Science and Engineering: C, 39, 177-185.
  22. Abd El-Mongy, M., & Mohamed, A. (2017). Synergistic effect of some medicinal plants oils incorporated with silver Nanoparticles against different Gram negative bacteria. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 13(2), 333-333.
  23. Naghmouchi, S., Al-Zaban, M. I., Al-Zaben, M., Alharbi, N., & Bahatheq, A. (2022). Generation and Characterization of Silver Nanoparticles in Mentha pulegium Extract and Evaluation of Biological Activities of the Prepared Extract. Journal of Nanomaterials, 2022.
  24. Varghese Alex, K., Tamil Pavai, P., Rugmini, R., Shiva Prasad, M., Kamakshi, K., & Sekhar, K. C. (2020). Green synthesized Ag nanoparticles for bio-sensing and Photocatalytic applications. ACS omega, 5(22), 13123-13129.
  25. Lan, W., Li, S., Shama, S., Zhao, Y., Sameen, D. E., He, L., & Liu, Y. (2020). Investigation of ultrasonic treatment on physicochemical, structural and morphological properties of sodium alginate/AgNPs/apple polyphenol films and its preservation effect on strawberry. Polymers, 12(9), 2096.
  26. Singh, J., & Dhaliwal, A. S. (2019). Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract. Analytical Letters, 52(2), 213-230.
  27. Tyagi, P. K., Quispe, C., Herrera-Bravo, J., Tyagi, S., Barbhai Mrunal, D., Kumar, M., ... & Ramniwas, S. (2021). Synthesis of Silver and Gold Nanoparticles: Chemical and Green Synthesis Method and Its Toxicity Evaluation against Pathogenic Bacteria Using the ToxTra
  28. Mollaei, S., Habibi, B., Amani Ghadim, A., & Shakouri, M. (2017). A green approach for the synthesis of silver nanoparticles using Lithospermum officinale root extract and evaluation of their antioxidant activity. Journal of Particle Science & Technology, 3(4), 187-195.
  29. Arshad, M., Shaheen, M. A., Qayyum, A., Maqsood, M., Mehmood, T., Karim, A., & Ahmad, T. (2018). 9. Bioinspired synthesis of silver nanoparticles from Morus alba and their photocatalytic degradation and antibacterial activity assessment. Pure and Applied Biology (PAB), 7(4), 1252-1260.
  30. Rasmagin, S. I., Krasovskii, V. I., Apresyan, L. A., Novikov, I. K., Krystob, V. I., & Kazaryan, M. A. (2018, April). Effect of mint solution concentration on the absorption spectra of silver nanoparticles in thulium ions presence. In International Conference on Atomic and Molecular Pulsed Lasers XIII (Vol. 10614, pp. 54-58). SPIE.
  31. Reddy, N. V., Li, H., Hou, T., Bethu, M. S., Ren, Z., & Zhang, Z. (2021). Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. International journal of nanomedicine, 16, 15.
  32. Mehmood, Y., Farooq, U., Yousaf, H., Riaz, H., Mahmood, R. K., Nawaz, A., ... & Khalid, I. (2020). Antiviral activity of green silver nanoparticles produced using aqueous buds extract of Syzygium aromaticum. Pakistan Journal of Pharmaceutical Sciences.
  33. Alkfaji, F., & Hussaini, I. M. A. (2020). Biosynthesis of silver nanoparticles with Mentha spicata against Aspergillus niger. Drug Invent. Today, 14, 806-811.
  34. Nouri, A., Yaraki, M. T., Lajevardi, A., Rezaei, Z., Ghorbanpour, M., & Tanzifi, M. (2020). Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid and Interface Science Communications, 35, 100252.
  35. Javidi, S., Mohammadi Nafchi, A., & Moghadam, H. H. (2022). Synergistic effect of nano-ZnO and Mentha piperita essential oil on the moisture sorption isotherm, antibacterial activity, physicochemical, mechanical, and barrier properties of gelatin film. Journal of Food Measurement and Characterization, 16(2), 964-974.
  36. Khan, S. U., Anjum, S. I., Ansari, M. J., Khan, M. H. U., Kamal, S., Rahman, K., ... & Khan, D. (2019). Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi journal of biological sciences, 26(7), 1815-1834.
  37. Wang, Y., O'Connor, D., Shen, Z., Lo, I. M., Tsang, D. C., Pehkonen, S., ... & Hou, D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of cleaner production, 226, 540-549.
  38. Singla, S., Jana, A., Thakur, R., Kumari, C., Goyal, S., & Pradhan, J. (2022). Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity. OpenNano, 7, 100047.
  39. Abd Al Majeed, R. M., & Haseen, N. N. (2019). ANTIBACTERIAL ACTIVITY OF GREEN SYNTHESIS OF SILVER NANOPARTICLES BY PLANTS. Plant Archives, 19(2), 4050-4054.
  40. Jyoti, K., Arora, D., Fekete, G., Lendvai, L., Dogossy, G., & Singh, T. (2021). Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Materials Technology, 36(14), 883-893.
  41. Thiyagarajan, S., & Kanchana, S. (2022). Green synthesis of silver nanoparticles using leaf extracts of Mentha arvensis Linn. and demonstration of their in vitro antibacterial activities. Brazilian Journal of Pharmaceutical Sciences, 58.
  42. Abdel-Hafez, S. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., & Mohamed, M. A. (2016). Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum. Int J Nano Chem, 2(1), 11-19.
  43. Reda, M., Ashames, A., Edis, Z., Bloukh, S., Bhandare, R., & Abu Sara, H. (2019). Green synthesis of potent antimicrobial silver nanoparticles using different plant extracts and their mixtures. Processes, 7(8), 510.
  44. Syed, B., Prasad, N., Dhananjaya, B. L., Yallappa, S., & Satish, S. (2016). Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme and Microbial Technology, 95, 128-136.
  45. Alkfaji, F., & Hussaini, I. M. A. (2020). Biosynthesis of silver nanoparticles with Mentha spicata against Aspergillus niger. Drug Invent. Today, 14, 806-811.
  46. Rasool, S., Tayyeb, A., Raza, M. A., Ashfaq, H., Perveen, S., Kanwal, Z., ... & Alomar, S. Y. (2022). Citrullus colocynthis-Mediated Green Synthesis of Silver Nanoparticles and Their Antiproliferative Action against Breast Cancer Cells and Bactericidal Roles against Human Pathogens. Nanomaterials, 12(21), 3781.
  47. Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International journal of Industrial chemistry, 4(1), 1-6.
  48. Amina, Z. E. R. R. O. U. G., Nouari, S. A. D. R. A. T. I., Rasime, D. E. M. I. R. E. L., Sabrina, B. A. K. L. I., & Daoud, H. A. R. Z. A. L. L. A. H. (2018). Antibacterial activity of endophytic fungus, Penicillium griseofulvum MPR1 isolated from medicinal plant, Mentha pulegium L. African Journal of Microbiology Research, 12(48), 1056-1066.
  49. Pietrzak, K., Otlewska, A., Puchalski, M., Gutarowska, B., & Guiamet, P. S. (2017). Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles. Applied Environmental Biotechnology, 2.
  50. Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health, 10(10), 5221-5238.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP