Vol 67 No 4 (2022): Journal of the Chilean Chemical Society


Bernabe L Rivas
Universidad de Concepcion
Published January 9, 2023
  • Macrolides, Removal, Contaminants, Aqueous Medium
How to Cite
Zuñiga D, M., & Rivas, B. L. (2023). REMOVAL OF MACROLYDES FROM WATER. ANALYTICAL REMOVAL TECHNIQUES. AN OVERVIEW. Journal of the Chilean Chemical Society, 67(4), 5727-5733. Retrieved from


Water is an essential substance to ensure the survival of human beings has been contaminated over the years, which has been reflected in the increase of contamination by substances from industry and domestic waste, deteriorating its quality and turning it into a risk for those who consume it or live in it. However, in recent years the interest of researchers to remedy this problem has led to the study of different techniques applied to remove these contaminants since the traditional methods used in water treatment plants do not satisfactorily fulfill this purpose. Among the contaminants of greatest interest and to which this review is directed are the emerging contaminants, substances at trace level of a large number of chemical compounds of different origin and nature, which accumulate in aquatic environments causing cardiac affections, psychiatric reactions, liver disorders, genetic mutation, ecotoxicological risks as well as bacterial resistance, such as macrolides. These compounds belong to the group of antibiotics used to treat mainly respiratory affections, but whose consumption has increased in the last couple of years due to their possible action for the prevention of contagion or reduction of symptoms in patients with the COVID-19 virus. Therefore, the objective of this review is to compile the techniques used for their removal, such as sonochemical treatment and continuous ozonation, from which removal percentages higher than 70% have been obtained for macrolides such as azithromycin, clarithromycin, and erythromycin, representative drugs of this type of antibiotics, this in order to conduct research and experimental work for the removal with techniques such as polymer-assisted liquid phase retention, ultranofiltration membranes, which have had high percentages of efficiency for different types of antibiotics and thus establish different ways of removal for these contaminants of interest.




  1. Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 692-699.
  2. Behzadi, A., Hashemi Motlagh, G., Raef, M., & Motahari, S. (2022). Diseño racional de aerogeles de resorcinol formaldehído modificados in situ para eliminar los antibióticos de clortetraciclina de soluciones acuosas. Ingenieria y Ciencia de Polimeros.
  3. Dorival-García, N., Zafra-Gómez, A., González, J., Vílchez, J., & Navalon, A. (2013). Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors. Science of The Total Environment, 317-328.
  4. Erkey, C., & Türk, M. (2021). Chapter 3 - Support materials. Supercritical Fluid Science and Technology, 19-30.
  5. Li, Z., Dai, R., Yang, B., Chen, M., Wang, X., & Wang, Z. (2021). An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. Journal of Hazardous Materials.
  6. Liu, H., Wei, Y., Luo, J., Li, T., Wang, D., Luo, S., & Crittenden, J. (2019). 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal, 639-648.
  7. Liu, L., Liu, C., Zheng, J., Huang, X., Wang, Z., Liu, Y., Zhu, G. (2013). Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere, 1088-1093.
  8. Lopardo,Horacio Angel. (2020). Antibioticos Clasificacion, estructura, mecanismos de accion y resistencia. Buenos Aires: Edulp.
  9. Russell, J., & Yost, C. (2021). Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere.
  10. Ballesteros Martín, M., Sánchez Pérez, J., García Sánchez, J., Casas López, J., & Malato Rodríguez, S. (2009). Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research, 3838-3848.
  11. Baquero, F. M. (2008). Antibióticos y resistencia a los antibióticos en ambientes acuáticos. Opinión actual sobre biotecnología, 260-265.
  12. Belioso, W. (2009). Historia de los antibioticos. REV. Hospital Italiano de Buenos Aires , 102-111.
  13. Boelens, R., Cremers, L., & Zwarteveen, M. (2011). Justicia hídrica: acumulación, conflicto y acción social. Lima: Fondo Editorial PUCP.
  14. Buitrago, F. (2006). La claritromicina incrementa la mortalidad total y cardiovascular en pacientes con cardiopatía isquémica estable,. Formación Médica Continuada en Atención Primaria, 350.
  15. Changwon, Y., Gwonhwa, S., & Whasun , L. (2020). A review of the toxicity in fish exposed to antibiotics. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, xxx.
  16. Chih-Cheng , L., Tzu-Ping , S., Wen-Chien , K., Hung-Jen, T., & Po-Ren , H. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, vol 55.
  17. Clemente, S., Dominguez, M., & Ruiz, A. (2015). La Hidrosfera. 1º ESO Biología y Geología. Primera Edición. Anaya Educacion.
  18. Cobos-Trigueros, N., Atekaa, O., Pitart, C., & Vila, J. (2009). Macrolidos y cetolidos. Enfermedades infecciosa y microbiologia clinica, 412-418.
  19. Copete-Pertuz, L., Plácido, J., Serna-Galvis, E., Torres-Palma, R., & Mora, A. (2018). Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Science of The Total Environment, 1195-1204.
  20. Correia, A. &. (2015). Presencia y eliminación de compuestos farmacéuticos en plantas de tratamientos de aguas residuales: Revisión a nivel mundial y perspectiva nacional. Boletín de Malariología y Salud Ambiental, , 1-18.
  21. Dreser, A., Wirtz, V., Corbett, K., & Echániz, G. (2008). Uso de antibióticos en México: revisión de problemas y políticas. Salud Pública de México, 50, 480-487.
  22. Emad, S., Elmolla, & Chaudhuri, M. (2009). Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. Journal of Hazardous Materials, 1476-1481.
  23. Faria , C., Ricci, B., & Silva, A. (2020). Removal of micropollutants in domestic wastewater by expanded granular sludge bed membrane bioreactor. Process Safety and Environmental Protection, 223-233.
  24. Gait, N., & Pierotto, M. (2010). Contaminación y contaminantes del agua. Salud Ambiental Infantil : manual para enseñanza de grado en escuelas de medicina 1a ed, 53-56.
  25. Gil, M., Soto, A., Usma, J., & Gutierrez, O. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción + Limpia, 7(2), 52-73.
  26. Gil, M., Soto, A., Usma, J., & Gutierrez, O. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Produccion+ Limpia, 52-73.
  27. Giron, R., & Ancochea, J. (2008). Macrólidos, no sólo antibióticos. Archivos de Bronconeumología, 229-232.
  28. Gonzalez Perez, M., Retamoza Lopez, J., Albores Arzate, R., & Guerrero de Leon, A. (2016). Gestión integral de cuencas hidrográficas: una alternativa a lasustentabilidad de los recursos hídricos en México. LACANDONIA, 91-98.
  29. Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 25-39.
  30. Guadarrama-Tejas, R., Kindo-Miranda, J., Roldan-Antunez, G., & Salas-Salgado, M. (2016). Contaminacion del agua. Revista de Ciencias Ambientales y Recursos Naturales Vol.2 No.5, 1-10.
  31. Hagren, V., Peippo, P., & Lovgren, T. (2005). Detecting and controlling veterinary drug residues in poultry y. En G. C. Mead (Ed.), Food Safety Control in the Poultry Industry. Reino Unido: S Woodhead Publishing.
  32. Hansen M, S. A. (2019). Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database of Systematic Reviews .
  33. Hassani, A., Khataee, A., Karaca, S., Karaca, C., & Gholami, P. (2017). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrasonics Sonochemistry, 35, Part A, 251-262.
  34. Hernando, M. D., Mezcua, M., Fernandez Alba, A., & Barcelo, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 334-340.
  35. Iakovides, I., Michael-Kordatou,, I., Moreira, N., Ribeiro, A., Fernandes, T., Pereira, M., . . . Fatta-Kassinos, D. (2019). Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Research, 333-347.
  36. Joydeep, D., & Aijaz Ahmad, M. (2020). Removal of antibiotic from the water environment by the adsorption technologies: a review. Water Sciencie & Technology.
  37. Kapoor, G., Saigal, S., & Elongavan, A. (2017). Mecanismos de acción y resistencia de los antibióticos: una guía para los médicos. . Revista de anestesiología, farmacología clínicA, 300-305.
  38. Kiki, C., Rashid, A., Wang, Y., Li, Y., Zeng, Q., Yu, C.-P., & Sun, Q. (2020). Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. Journal of Hazardous Materials.
  39. Li, L., Guo, C., Fan, S., Lv, J., Zhang, Y., Xu, Y., & Xu, J. (2018). Dynamic transport of antibiotics and antibiotic resistance genes under different treatment processes in a typical pharmaceutical wastewater treatment plant. Environmental Science and Pollution Research, 25-30.
  40. Lucas, M., Mestorino, N., & Errecalde, J. (2007). MACRÓLIDOS: Novedades de un clásico grupo de antimicrobianos . Analecta veterinaria 27, 36-45.
  41. M. Vila-Justribo, J. D.-S.-D. (2006). Bronquiectasias y macrólidos. Archivos de Bronconeumología, 206.
  42. Maciej Długosz, P. Ż. (2015). Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. Journal of Hazardous Materials, 146-153.
  43. Martínez, J. (2008). Contaminación ambiental por antibióticos y por determinantes de la resistencia a los antibióticos. Contaminación ambiental, 2893-2902.
  44. Martínez-Alcalá, I., Soto, J., & Lahora, A. (2020). Antibióticos como contaminantes emergentes. Riesgo ecotoxicológicoy control en aguas residuales y depuradas. Ecosistemas, 20-70. doi:
  45. Martín-Pozo, L., Gómez-Regalado, M., García-Córcoles, M., & Zafra-Gómez, A. (2022). Chapter 16 - Removal of quinolone antibiotics from wastewaters and sewage sludge. Emerging Contaminants in the Environment, 381-406.
  46. McMullan, B., & Mostaghim, M. (2015). Prescribing azithromycin. Australian Prescriber An Indenpendent Review, 87-90.
  47. McMullan, B., & Mostaghim, M. (2015). Prescribing azithromycin. AAustralian Prescriber, 87-90.
  48. Medina Asensio, J. (200). Guia de antimicrobianos y tratamiento de infecciones. Madrid: Diaz de Santos S.A.
  49. Melendez- Marmolejo, J., García-Saavedra, Y., Galván-Romero, V., Díaz de León-Martínez, L., Vargas-Berrones , K., Mejía-Saavedra, J., & Flores Ramírez, R. (2020). Emerging contaminants. Environmental problems associated with antibiotic use. New detection and remediation techniques and legislative perspectives in Latin America. Rev. Salud Ambiente.
  50. Montoya-Rodríguez, D. M.-G.-P. (2020). Degradation of the emerging concern pollutant ampicillin in aqueous media by sonochemical advanced oxidation processes - Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. Journal of Environmental Management.
  51. Muhammad , U., Muhammad , F., & Khalil , H. (2020). Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19. Science of The Total Environment, 141053.
  52. Muhammad Tariq, K., Izaz Ali , S., Ihsanullah, I., Mu. , N., Sharafat , A., Syed Hassan , A., & Abdul Wahab , M. (2021). Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes,. Journal of Water Process Engineering, 101-990.
  53. Oliveira Guimarães, D., Da Silva Momesso, L., & Tallarico Pupo, M. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Revisão • Quím. Nova, 33.
  54. Orta, I., Calvo, D., Jimenez Lopez, G., Lara Bastanzuri, C., & Broche, L. (2014). Azithromycin and cardiovascular effects reported to ther Cuban System of Drug Surveillance in the period of 2003-2012. Revista Cubana de Farmacia, 519-528.
  55. Palacio, D. B. (2020). Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes. Chemosphere., 258. doi:127416
  56. Palacio, D. L. (2020). Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase. Environmental Research., 182. doi:109014
  57. Palacio, D. U. (2021). Water-soluble polymers with the ability to remove amoxicillin as emerging pollutant from water. Environmental Technology and Innovation, 23. doi:101589
  58. Palacio, D. U. (2022). Application of nanocomposite polyelectrolytes for the removal of antibiotics as emerging pollutants in water. Journal of Water Process, 46. doi:102582
  59. Palacio, D., Leiton, L., Urbano, B., & Rivas, B. (2020). Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase polymer-based retention. Environmental Research.
  60. Palacio, D., Rivas, B., & Urbano, B. (2018). Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems. Chemical Engineering Journal, 351, 5- 13.
  61. Palacio, D., Rivas, B., & Urbano, B. (2018). Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems. Chemical Engineering Journal, 85-93.
  62. Pawel Krzeminski, M. C.-K. (2019). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of The Total Environment, 1052-1081.
  63. Peña-Alvarez, A., & Castillo-Alanís , A. (2015). Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextraccion en fase solida-cromoatografia de gases-espectrometria de masas. D.R. © TIP Revista Especializada en Ciencias Químico-Biológicas, 29-42.
  64. Rashad, A., Nafady, A., Hassan, M., Mansour, H., Usama, ,. T., Bazeed, S., . . . Abdelmaksoud, A. (2021). Therapeutic efficacy of macrolides in the management of patients with mild COVID-19. Informes cientificos. doi:
  65. Rawson, T., Moore, L., Castro-Sanchez, E., Charani, E., Davies, F., Satta, G., . . . Holmes, A. (2020). COVID-19 and the potential long-term impact on antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 1681-1684.
  66. Rivas Quiroz, B., Urbano Cantanilla, B., & Palacio Badel , D. (2020). Biblioteca UdeC Repositorio. Obtenido de
  67. Rivas, B. O. (2020). Removal of oxytetracycline by Polymers. An overview. Journal of the Chilean Chemical Society., 65(4), 4943-4947.
  68. Rodríguez-González María Reyes, M.-B. J.-B.-L. (2013). Humedal de flujo vertical para tratamiento terciario del efluente físico-químico de una estación depuradora de aguas residuales domésticas,. Ingeniería, Investigación y Tecnología, 223-235.
  69. Sanz de Miguel, M., Sancho Garcia, E., Chapi Peña, B., Campor Bernal, A., Romero Gil, R., & Garcia Vera, C. (2010). Reacciones adversas psiquiátricas asociadas a nuevos macrólidos. A propósito de tres casos . Revista Pediatrica de Atencion Primaria, 249-253.
  70. Sarmah, A., Meyer, M., & Boxall, A. (2006). A global perspective on the use, sales, pathways, occurrence, fate and effects of veterinary antibiotics (VAs). Chemosphere 65, 725-759.
  71. Scholz, M. (2016). Chapter 2. Water Treatment. En M. (. Scholz, Wetlands for Water Pollution Control (págs. 9-11). Amsterdam: Elsevier.
  72. Sejia, V., Vignoli, R., Bado, I., Cordeiro, N., Garcia, V., & Robalino , L. (2008). Principales grupos de antibioticos. En U. d. Medicina, Temas de bacteriologia y virologia medica (págs. 631-647). Montevideo: FEFMUR.
  73. Serna-Galvis, E. A., Silva-Agredo, J., L. Giraldo-Aguirre, A., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 276-283.
  74. Servicio Central de Publicaciones del Gobierno Vasco. (2016). Farmacocontaminacion. Impacto Ambiental de los medicamentos . INFAC, 59-64.
  75. Sevilla-Sánchez, D., Soy-Muner, D., & Soler-Porcar, N. (2010). Utilidad de los macrólidos como antiinflamatorios en las enfermedades respiratorias. Archivos de Bronconeumología, 244-254.
  76. Sevilla-SAnchez, D., Soy-Muner, D., & Soler-Porcar, A. N. (2010). Utilidad de los macrólidos como antiinflamatorios en las enfermedades respiratorias. Archivos de Bronconeumologia, 244-254.
  77. Speight, J. (269-306). Chapter 8 - Biological Transformations. Butterworth-Heinemann: Elsevier Inc.
  78. Taheran, M., Naghdi, M., Brar, S., Knystautas, E., Verma, M., & Surampalli, R. (2017). Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Science of The Total Environment, 315-321.
  79. Tejada, C., Quiñonez, E., & Peña, M. (2014). Contaminantes Emergentes en Aguas: Metabolitos de Fármacos. Una Revisión. Revista Facultad de Ciencias Básicas , 80-101.
  80. Vera, L., Ruigomez, I., Gonzalez, E., Bodelon, P., & Rodriguez-Sevilla, J. (2014). ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY. Avances en Ciencias e Ingenieria, 1-15.
  81. Wilkinson, J., Boxall, A., Kolpin, D., Leung, K., Racliffe , L., Galban Malagon, C., . . . Marchante, R. (2022). Natural disasters and immunological aging. Proceedings of the National Academy of Sciences of the United States of America PNAS.
  82. Xiangping , C., Lei, L., Sitian , L., Jian, H., Ruiwen , L., Jun , M., . . . Lizhong , Z. (2021). Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Science of The Total Environment, 792-148352. doi:10.1016/j.scitotenv.2021.148352
  83. Yang, J., Lin, Y., Yang, X., Bun Ng, T., Ye, X., & Lin, J. (2017). Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. Journal of Hazardous Materials, 525-531.
  84. Yi K, L., Tse C., C., Hsing J, T., Hung C, W., Jarrn H, L., I K, L., . . . Ching S, C. (2016). Comportamiento de adsorción y mecanismo del antibiótico sulfametoxazol en nanopartículas magnéticas de Ni encapsuladas en nanofibras de carbono funcionalizadas carboxílico. Langmuir Sociedad Americana de Quimica, 9530-9539.
  85. Yu, X., Wu, Y., Deng, Y., Liu, S., Wang, X., He, M., . . . Tu, W. (2019). Comportamiento de adsorción y mecanismo del antibiótico sulfametoxazol en nanopartículas magnéticas de Ni encapsuladas en nanofibras de carbono funcionalizadas carboxílico. Chemosphere, 696-700.
  86. Zamora-Velez, J., Vera-Saltos, L., Rodriguez- Diaz, M., & Gomez-Salcedo, Y. (2021). Techniques applied to the elimination of drugs, used in the treatment of covid-19: Areview. Polo del Conocieminto Ciencias Técnicas y Aplicadas. Artículos de revisión, 15-36.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP