JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 68 No 3 (2023): Journal of the Chilean Chemical Society
Original Research Papers

THEORETICAL STUDY OF AU-S INTERACTION IN CLUSTERS MODELS OF A α-CYCLODEXTRIN COMPLEX

Carlos Orellana
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Casilla 653, Santiago, Chile.
Fernando Mendizabal
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Casilla 653, Santiago, Chile.
Published December 31, 2023
Keywords
  • gold-thiol interaction, gold cluster, dispersion, frequency, theoretical calculation
How to Cite
Orellana, C., & Mendizabal, F. (2023). THEORETICAL STUDY OF AU-S INTERACTION IN CLUSTERS MODELS OF A α-CYCLODEXTRIN COMPLEX. Journal of the Chilean Chemical Society, 68(3), 5945-5949. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2242

Abstract

Theoretical calculations were correlated to elucidate the interface interaction between thiol groups of host-guest systems and gold cluster. The 1-octanethiol molecule acts as guest into α-cyclodextrin host to form a supramolecular complex in which is stabilizing gold clusters. The intermolecular interaction and the vibrational frequencies nature between a host-guest system and gold cluster were elucidated by a theoretical point of view at the MP2, SCS-MP2, and PBE-D3 methods. It is showing a van der Waals interaction and a good vibrational frequencies correlation.

References

  1. A. Mathew, G. Natarajan, L. Lehtovaara, H. Häkkinen, R.M. Kumar, V. Subramanian, A. Jaleel, T. Pradeep, ACS Nano. (2014), 8, 139–152.
  2. L. Wenqi, L. O. Jones, W. Wu, C. L. Stern, R.A. Sponenburg, G.C. Schatz, J. F. Stoddart, J. Am. Chem. Soc. (2021), 143, 1984−1992.
  3. H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Chem. Soc. Rev. (2012), 41, 3210–3244.
  4. G. Calixto, B. Fonseca-Santos, M. Chorilli, J. Bernegossi, Int. J. Nanomedicine (2014), 9, 3719-3726.
  5. N. Vallavoju, J. Sivaguru, Chem. Soc. Rev. (2014), 43, 4084-4090.
  6. R. Chalasani, S. Vasudevan, ACS Nano (2013), 7, 4093–4104.
  7. Z. Wu, N. Song, R. Menz, B. Pingali, Y.-W. Yang, Y. Zheng, Nanomedicine (2015), 10, 1493–1514.
  8. Y. Yang, Y. Sun, N. Song, Acc. Chem. Res. (2014), 47, 1950–1960.
  9. K. Ariga, H. Ito, J.P. Hill, H. Tsukube, Chem. Soc. Rev. (2012), 41, 5800–5835.
  10. K. Ariga, T. Mori, J.P. Hill, Soft Matter (2012), 8, 15–20.
  11. A.B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffmann, K. Rurack, Angew. Chemie Int. Ed. (2006), 45, 5924–5948.
  12. V. Dryza, E.J. Bieske, J. Phys. Chem. C 119 (2015), 119, 14076–14084.
  13. W. Huang, M. Ji, C.-D. Dong, X. Gu, L.-M. Wang, X.G. Gong, L.-S. Wang, ACS Nano (2008), 2, 897–904.
  14. P.T. Bishop, L.J. Ashfield, A. Berzins, A. Boardman, V. Buche, J. Cookson, R.J. Gordon, C. Salcianu, P.A. Sutton, Gold Bull (2010), 43, 181−188.
  15. Z. Yang, G. Jiang, Z. Xu, S. Zhao, W. Liu, Coord. Chem. Rev. (2020), 423, 213492-213501.
  16. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia, L. Reven, Langmuir (1996), 12, 1262–1269.
  17. M. Möller, J.P. Spatz, A. Roescher, Adv. Mater. (1996), 8, 337–340.
  18. Z. Liu, M. Frasconi, J. Lei, Z. Brown, Z. Zhu, D. Cao, J. Iehl, G. Liu, A.C. Fahrenbach, Y.Y. Botros, O.K. Farha, J.T. Hupp, C.A. Mirkin, J. F. Stoddart, Nat. Commun. (2013), 4, 1855-1860.
  19. Z. Liu, A. Samanta, J. Lei, J. Sun, Y. Wang, J.F. Stoddart, J. Am. Chem. Soc. (2016), 138, 11643− 11653.
  20. S.K. Ghosh, T. Pal, Chem. Rev. (2007), 107, 4797–4862.
  21. R. Shenhar, T.B. Norsten, V.M. Rotello, Adv. Mater. (2005), 17, 657–669.
  22. M. Murugesan, D. Cunningham, J.-L. Martinez-Albertos, R.M. Vrcelj, B.D. Moore, Chem. Commun. (2005) 2677.
  23. T. Shimizu, T. Teranishi, S. Hasegawa, M. Miyake, J. Phys. Chem. B. (2003), 107, 2719–2724.
  24. L. Bardotti, B. Prével, P. Jensen, M. Treilleux, P. Mélinon, A. Perez, J. Gierak, G. Faini, D. Mailly, Appl. Surf. Sci. (2002), 191, 205–210.
  25. S. Zhang, K.L. Chandra, C.B. Gorman, J. Am. Chem. Soc. (2007), 129, 4876–4877.
  26. L. Nagle, D. Ryan, S. Cobbe, D. Fitzmaurice, Nano Lett. (2003), 3, 51–53.
  27. Y. Fujiki, N. Tokunaga, S. Shinkai, K. Sada, Angew. Chemie - Int. Ed. (2006), 45, 4764–4767.
  28. L. Barrientos, N. Yutronic, F. del Monte, M.C. Gutiérrez, P. Jara, New J. Chem. (2007), 31, 1400-1408.
  29. L. Barrientos, P. Allende, C. Orellana, P. Jara, Inorganica Chim. Acta. (2012), 380, 372–377.
  30. C. Vericat, M.E. Vela, G. Corthey, E. Pensa, E. Cortés, M.H. Fonticelli, F. Ibanez, R.C. Salvarezza, RSC Advances (53), 4, 27730-27754.
  31. I.I. Rzeźnicka, J. Lee, P. Maksymovych, J.T. Yates, J. Phys. Chem. B. (2005), 109, 15992–15996.
  32. M. Hasan, D. Bethell, M. Brust, J. Am. Chem. Soc. (2002), 124, 1132–1133.
  33. G.A. Ozin, A.C. Arsenault, L. Cademartiri, Royal Society of Chemistry (Great Britain), Nanochemistry : a chemical approach to nanomaterials, Royal Society of Chemistry, 2009.
  34. R.G. Nuzzo, B.R. Zegarski, L.H. Dubois, J. Am. Chem. Soc. (1987), 109, 733–740.
  35. A. Bilić, J.R. Reimers, N.S. Hush, J. Chem. Phys. (2005), 122, 094708.
  36. F.P. Cometto, P. Paredes-Olivera, V.A. Macagno, E.M. Patrito, J. Phys. Chem. B. (2005), 109, 21737–21748.
  37. D.L. Kokkin, R. Zhang, T.C. Steimle, I.A. Wyse, B.W. Pearlman, T.D. Varberg, J. Phys. Chem. A. (2015), 119, 11659–11667.
  38. G.P. Brivio, M.I. Trioni, Rev. Mod. Phys. (1999), 71, 231–265.
  39. G.-J. Kroes, A. Gross, E.-J. Baerends, M. Scheffler, D.A. McCormack, Acc. Chem. Res. (2002), 35, 193–200.
  40. S. Grimme, J. Comput. Chem. (2006), 27, 1787–1799.
  41. D. Fernández-Torre, O. Kupiainen, P. Pyykkö, L. Halonen, Chem. Phys. Lett. (2009), 471, 239–243.
  42. Y. Yourdshahyan, A.M. Rappe, J. Chem. Phys. (2002), 117, 825-830.
  43. D.-e. Jiang, Chem. Phys. Letters (2009), 477, 90-94.
  44. P. Pyykkö, Chem. Soc. Rev. (2008), 37, 1967-1980.
  45. S. Grimme, Rev. Comput. Mol. Sci. 1 (2011), 1, 211–228.
  46. N. Tasinato, S. Grimme, Phys. Chem. Chem. Phys. (2015), 17, 5659–5669.
  47. J. V. Koppen, M. Hapka, M. Modrzejewski, M.M. Szczȩśniak, G. Chałasiń Ski, J. Chem. Phys. (2014), 140, 244313.
  48. M.P. Andersson, J. Theor. Chem. 2013 (2013), 2013, 1–9.
  49. S. Miranda-Rojas, R. Salazar-Molina, J. Kästner, R. Arratia-Pérez, F. Mendizábal, RSC Adv. (2016), 6, 4458–4468.
  50. F. Mendizabal, S. Miranda-Rojas, L. Barrientos-Poblete, Comput. Theor. Chem. (2015), 1057, 74–79.
  51. S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, F. Mendizábal, Phys. Chem. Chem. Phys. (2013), 15, 20363.
  52. A. Muñoz-Castro, T. Gomez, D.M. Carey, S. Miranda-Rojas, F. Mendizabal, J.H. Zagal, R. Arratia-Perez, J. Phys. Chem. C. (2016), 120, 7358–7364.
  53. L. Barrientos, E. Lang, G. Zapata-Torres, C. Celis-Barros, C. Orellana, P. Jara, N. Yutronic, J. Mol. Model. (2013), 19, 2119–2126.
  54. H. Li, G.J. Thomas, J. Am. Chem. Soc. (1991), 113, 456–462.
  55. C. Rúa, M. Sepúlveda, S. Gutiérrez, J.J. Cárcamo-Vega, J. Surco-Luque, M. Campos-Vallette, F. Guzmán, P. Conti, M. Pereira, Conserv. Sci. Cult. Herit.(2017), 17, 117-137.
  56. L. Barrientos, P. Allende, V. Lavayen, N. Yutronic, Private comunicate. Unpublished results.
  57. B.O. Skadtchenko, R. Aroca, Acta Part A Mol. Biomol. Spectrosc. (2001), 57, 1009–1016.
  58. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., (2016).
  59. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. (1989), 162, 165–169.
  60. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996), 77, 3865–3868.
  61. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1997), 78, 1396–1396.
  62. T. Risthaus, S. Grimme, J. Chem. Theory Comput. (2013), 9, 1580–1591.
  63. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta. (1990), 77, 123–141.
  64. P. Pyykkö, N. Runeberg, F. Mendizabal, Chem. - A Eur. J. (1997), 3, 1451–1457.
  65. E.J. Fernández, A. Laguna, J.M. López-de-Luzuriaga, F. Mendizabal, M. Monge, M.E. Olmos, J. Pérez, Chem. - A Eur. J. (2003), 9, 456–465.
  66. A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Mol. Phys. (1993), 80, 1431–1441.
  67. T.H. Dunning Jr., J. Chem. Phys. (1971), 55, 716-725.
  68. P. Pyykkö, Angew. Chemie Int. Ed. (2004), 43, 4412–4456.
  69. A.J. Pérez-Jiménez, J.C. Sancho-García. J. Am. Chem. Soc. 131 (2009) 14857–14867.
  70. P. Hobza, R. Zahradnik, Chem. Rev. (1988), 88, 871–897.
  71. S. Boys, F. Bernardi, Mol. Phys. (1970), 4, 553–566.
  72. N. Runeberg, M. Schütz, H.-J. Werner, J. Chem. Phys. 110 (1999), 110, 7210-7216.
  73. P. Pyykkö, W. Schneider, A. Bauer, A. Bayler, H. Schmidbaur, Chem. Commun. (1997) 1111–1112.
  74. S. Grimme, J. Chem. Phys. (2003), 118, 9095–9102.
  75. S. Grimme, J. Comput. Chem. (2003), 24, 1529–1537.
  76. P. Pyykkö, X.-G. Xiong, J. Li, Faraday Discuss. (2011), 152, 169. doi:10.1039/c1fd00018g.
  77. I. Ponce, J. F. Silva, R. Oñate, S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, F. Mendizabal, J. H. Zagal, J. Phys. Chem. C (2011), 115, 23512–23518.
  78. I. Ponce, J. F. Silva, R. Oñate, M. C. Rezende, M. A. Paez, J. H. Zagal, J. Pavez, F. Mendizabal, S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, J. Phys. Chem. C (2012), 116, 15329–15341.
  79. P. G. Lustemberg, M. L. Martiarena, A. E. Martínez, H. F. Busnengo, Langmuir, (2008), 24, 3274-3280.
  80. D. Joseph, K.E. Geckeler, Langmuir (2009), 25, 13224–13231.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP