- gold-thiol interaction, gold cluster, dispersion, frequency, theoretical calculation
Copyright (c) 2023 SChQ
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Theoretical calculations were correlated to elucidate the interface interaction between thiol groups of host-guest systems and gold cluster. The 1-octanethiol molecule acts as guest into α-cyclodextrin host to form a supramolecular complex in which is stabilizing gold clusters. The intermolecular interaction and the vibrational frequencies nature between a host-guest system and gold cluster were elucidated by a theoretical point of view at the MP2, SCS-MP2, and PBE-D3 methods. It is showing a van der Waals interaction and a good vibrational frequencies correlation.
References
- A. Mathew, G. Natarajan, L. Lehtovaara, H. Häkkinen, R.M. Kumar, V. Subramanian, A. Jaleel, T. Pradeep, ACS Nano. (2014), 8, 139–152.
- L. Wenqi, L. O. Jones, W. Wu, C. L. Stern, R.A. Sponenburg, G.C. Schatz, J. F. Stoddart, J. Am. Chem. Soc. (2021), 143, 1984−1992.
- H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Chem. Soc. Rev. (2012), 41, 3210–3244.
- G. Calixto, B. Fonseca-Santos, M. Chorilli, J. Bernegossi, Int. J. Nanomedicine (2014), 9, 3719-3726.
- N. Vallavoju, J. Sivaguru, Chem. Soc. Rev. (2014), 43, 4084-4090.
- R. Chalasani, S. Vasudevan, ACS Nano (2013), 7, 4093–4104.
- Z. Wu, N. Song, R. Menz, B. Pingali, Y.-W. Yang, Y. Zheng, Nanomedicine (2015), 10, 1493–1514.
- Y. Yang, Y. Sun, N. Song, Acc. Chem. Res. (2014), 47, 1950–1960.
- K. Ariga, H. Ito, J.P. Hill, H. Tsukube, Chem. Soc. Rev. (2012), 41, 5800–5835.
- K. Ariga, T. Mori, J.P. Hill, Soft Matter (2012), 8, 15–20.
- A.B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffmann, K. Rurack, Angew. Chemie Int. Ed. (2006), 45, 5924–5948.
- V. Dryza, E.J. Bieske, J. Phys. Chem. C 119 (2015), 119, 14076–14084.
- W. Huang, M. Ji, C.-D. Dong, X. Gu, L.-M. Wang, X.G. Gong, L.-S. Wang, ACS Nano (2008), 2, 897–904.
- P.T. Bishop, L.J. Ashfield, A. Berzins, A. Boardman, V. Buche, J. Cookson, R.J. Gordon, C. Salcianu, P.A. Sutton, Gold Bull (2010), 43, 181−188.
- Z. Yang, G. Jiang, Z. Xu, S. Zhao, W. Liu, Coord. Chem. Rev. (2020), 423, 213492-213501.
- A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia, L. Reven, Langmuir (1996), 12, 1262–1269.
- M. Möller, J.P. Spatz, A. Roescher, Adv. Mater. (1996), 8, 337–340.
- Z. Liu, M. Frasconi, J. Lei, Z. Brown, Z. Zhu, D. Cao, J. Iehl, G. Liu, A.C. Fahrenbach, Y.Y. Botros, O.K. Farha, J.T. Hupp, C.A. Mirkin, J. F. Stoddart, Nat. Commun. (2013), 4, 1855-1860.
- Z. Liu, A. Samanta, J. Lei, J. Sun, Y. Wang, J.F. Stoddart, J. Am. Chem. Soc. (2016), 138, 11643− 11653.
- S.K. Ghosh, T. Pal, Chem. Rev. (2007), 107, 4797–4862.
- R. Shenhar, T.B. Norsten, V.M. Rotello, Adv. Mater. (2005), 17, 657–669.
- M. Murugesan, D. Cunningham, J.-L. Martinez-Albertos, R.M. Vrcelj, B.D. Moore, Chem. Commun. (2005) 2677.
- T. Shimizu, T. Teranishi, S. Hasegawa, M. Miyake, J. Phys. Chem. B. (2003), 107, 2719–2724.
- L. Bardotti, B. Prével, P. Jensen, M. Treilleux, P. Mélinon, A. Perez, J. Gierak, G. Faini, D. Mailly, Appl. Surf. Sci. (2002), 191, 205–210.
- S. Zhang, K.L. Chandra, C.B. Gorman, J. Am. Chem. Soc. (2007), 129, 4876–4877.
- L. Nagle, D. Ryan, S. Cobbe, D. Fitzmaurice, Nano Lett. (2003), 3, 51–53.
- Y. Fujiki, N. Tokunaga, S. Shinkai, K. Sada, Angew. Chemie - Int. Ed. (2006), 45, 4764–4767.
- L. Barrientos, N. Yutronic, F. del Monte, M.C. Gutiérrez, P. Jara, New J. Chem. (2007), 31, 1400-1408.
- L. Barrientos, P. Allende, C. Orellana, P. Jara, Inorganica Chim. Acta. (2012), 380, 372–377.
- C. Vericat, M.E. Vela, G. Corthey, E. Pensa, E. Cortés, M.H. Fonticelli, F. Ibanez, R.C. Salvarezza, RSC Advances (53), 4, 27730-27754.
- I.I. Rzeźnicka, J. Lee, P. Maksymovych, J.T. Yates, J. Phys. Chem. B. (2005), 109, 15992–15996.
- M. Hasan, D. Bethell, M. Brust, J. Am. Chem. Soc. (2002), 124, 1132–1133.
- G.A. Ozin, A.C. Arsenault, L. Cademartiri, Royal Society of Chemistry (Great Britain), Nanochemistry : a chemical approach to nanomaterials, Royal Society of Chemistry, 2009.
- R.G. Nuzzo, B.R. Zegarski, L.H. Dubois, J. Am. Chem. Soc. (1987), 109, 733–740.
- A. Bilić, J.R. Reimers, N.S. Hush, J. Chem. Phys. (2005), 122, 094708.
- F.P. Cometto, P. Paredes-Olivera, V.A. Macagno, E.M. Patrito, J. Phys. Chem. B. (2005), 109, 21737–21748.
- D.L. Kokkin, R. Zhang, T.C. Steimle, I.A. Wyse, B.W. Pearlman, T.D. Varberg, J. Phys. Chem. A. (2015), 119, 11659–11667.
- G.P. Brivio, M.I. Trioni, Rev. Mod. Phys. (1999), 71, 231–265.
- G.-J. Kroes, A. Gross, E.-J. Baerends, M. Scheffler, D.A. McCormack, Acc. Chem. Res. (2002), 35, 193–200.
- S. Grimme, J. Comput. Chem. (2006), 27, 1787–1799.
- D. Fernández-Torre, O. Kupiainen, P. Pyykkö, L. Halonen, Chem. Phys. Lett. (2009), 471, 239–243.
- Y. Yourdshahyan, A.M. Rappe, J. Chem. Phys. (2002), 117, 825-830.
- D.-e. Jiang, Chem. Phys. Letters (2009), 477, 90-94.
- P. Pyykkö, Chem. Soc. Rev. (2008), 37, 1967-1980.
- S. Grimme, Rev. Comput. Mol. Sci. 1 (2011), 1, 211–228.
- N. Tasinato, S. Grimme, Phys. Chem. Chem. Phys. (2015), 17, 5659–5669.
- J. V. Koppen, M. Hapka, M. Modrzejewski, M.M. Szczȩśniak, G. Chałasiń Ski, J. Chem. Phys. (2014), 140, 244313.
- M.P. Andersson, J. Theor. Chem. 2013 (2013), 2013, 1–9.
- S. Miranda-Rojas, R. Salazar-Molina, J. Kästner, R. Arratia-Pérez, F. Mendizábal, RSC Adv. (2016), 6, 4458–4468.
- F. Mendizabal, S. Miranda-Rojas, L. Barrientos-Poblete, Comput. Theor. Chem. (2015), 1057, 74–79.
- S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, F. Mendizábal, Phys. Chem. Chem. Phys. (2013), 15, 20363.
- A. Muñoz-Castro, T. Gomez, D.M. Carey, S. Miranda-Rojas, F. Mendizabal, J.H. Zagal, R. Arratia-Perez, J. Phys. Chem. C. (2016), 120, 7358–7364.
- L. Barrientos, E. Lang, G. Zapata-Torres, C. Celis-Barros, C. Orellana, P. Jara, N. Yutronic, J. Mol. Model. (2013), 19, 2119–2126.
- H. Li, G.J. Thomas, J. Am. Chem. Soc. (1991), 113, 456–462.
- C. Rúa, M. Sepúlveda, S. Gutiérrez, J.J. Cárcamo-Vega, J. Surco-Luque, M. Campos-Vallette, F. Guzmán, P. Conti, M. Pereira, Conserv. Sci. Cult. Herit.(2017), 17, 117-137.
- L. Barrientos, P. Allende, V. Lavayen, N. Yutronic, Private comunicate. Unpublished results.
- B.O. Skadtchenko, R. Aroca, Acta Part A Mol. Biomol. Spectrosc. (2001), 57, 1009–1016.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. V Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., (2016).
- R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. (1989), 162, 165–169.
- J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996), 77, 3865–3868.
- J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1997), 78, 1396–1396.
- T. Risthaus, S. Grimme, J. Chem. Theory Comput. (2013), 9, 1580–1591.
- D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta. (1990), 77, 123–141.
- P. Pyykkö, N. Runeberg, F. Mendizabal, Chem. - A Eur. J. (1997), 3, 1451–1457.
- E.J. Fernández, A. Laguna, J.M. López-de-Luzuriaga, F. Mendizabal, M. Monge, M.E. Olmos, J. Pérez, Chem. - A Eur. J. (2003), 9, 456–465.
- A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Mol. Phys. (1993), 80, 1431–1441.
- T.H. Dunning Jr., J. Chem. Phys. (1971), 55, 716-725.
- P. Pyykkö, Angew. Chemie Int. Ed. (2004), 43, 4412–4456.
- A.J. Pérez-Jiménez, J.C. Sancho-García. J. Am. Chem. Soc. 131 (2009) 14857–14867.
- P. Hobza, R. Zahradnik, Chem. Rev. (1988), 88, 871–897.
- S. Boys, F. Bernardi, Mol. Phys. (1970), 4, 553–566.
- N. Runeberg, M. Schütz, H.-J. Werner, J. Chem. Phys. 110 (1999), 110, 7210-7216.
- P. Pyykkö, W. Schneider, A. Bauer, A. Bayler, H. Schmidbaur, Chem. Commun. (1997) 1111–1112.
- S. Grimme, J. Chem. Phys. (2003), 118, 9095–9102.
- S. Grimme, J. Comput. Chem. (2003), 24, 1529–1537.
- P. Pyykkö, X.-G. Xiong, J. Li, Faraday Discuss. (2011), 152, 169. doi:10.1039/c1fd00018g.
- I. Ponce, J. F. Silva, R. Oñate, S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, F. Mendizabal, J. H. Zagal, J. Phys. Chem. C (2011), 115, 23512–23518.
- I. Ponce, J. F. Silva, R. Oñate, M. C. Rezende, M. A. Paez, J. H. Zagal, J. Pavez, F. Mendizabal, S. Miranda-Rojas, A. Muñoz-Castro, R. Arratia-Pérez, J. Phys. Chem. C (2012), 116, 15329–15341.
- P. G. Lustemberg, M. L. Martiarena, A. E. Martínez, H. F. Busnengo, Langmuir, (2008), 24, 3274-3280.
- D. Joseph, K.E. Geckeler, Langmuir (2009), 25, 13224–13231.