JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 4 (2022): Journal of the Chilean Chemical Society
Original Research Papers

THIONE-THIOL TAUTOMERIC EQUILIBRIUM IN A DIHYDROPYRIMIDINE-THIONE: X RAY DIFFRACTION HELPED BY NMR, FTIR AND THEORETICAL CALCULATIONS

Yanko Moreno
Universidad Santo Tomás
Bio
PhD
Universidad de Concepción
Bio
Luis Álvarez
Universidad Técnica Federico Santa María, Valparaiso, Chile.
Ricardo Baggio
GIyA, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
José Muñoz
Universidad Andrés Bello, Departamento de Química, Facultad de Ciencias Exactas, Viña del Mar, Chile.
Jorge Soto
Universidad Andrés Bello, Departamento de Química, Facultad de Ciencias Exactas, Viña del Mar, Chile.
Published January 9, 2023
Keywords
  • tautomeric equilibrium,
  • X-ray diffraction,
  • Thione-thiol
How to Cite
Moreno, Y., Brovelli, F., Álvarez, L., Baggio, R., Pena, O., Muñoz, J., & Soto, J. (2023). THIONE-THIOL TAUTOMERIC EQUILIBRIUM IN A DIHYDROPYRIMIDINE-THIONE: X RAY DIFFRACTION HELPED BY NMR, FTIR AND THEORETICAL CALCULATIONS. Journal of the Chilean Chemical Society, 67(4), 5702-5707. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2186

Abstract

The solid state thione-thiol equilibrium in 4,6-di­phenyl-3,4-di­hydro­pyrimidine-2(1H)-thione (C16H14N2S) is analyzed through three different techniques, viz: Single Cristal X-Ray Diffraction (SCXRD), Nuclear Magnetic Resonance (NMR) and Fourier Transformed Infra-Red spectroscopy (FTIR), each one providing complementary information to the solution of the problem. The existence of thione-thiol equilibrium is firmly established, both in solution (by HNMR techniques) as in the solid state (by FTIR methods), and even if no traces of the thiol form could be found via SCXRD, some hints about the way in which the coexistence of both forms could be structurally achieved are provided by the structural analysis. In order to confirm the existence of this equilibrium, theoretical calculations were carried out at the B3LYP/6-311G(d,p) level theory, and a double proton transfer reaction is proposed.

 

21861.jpg

References

  1. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. http://www.gaussian.com.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
  3. Gupta, P. & Gupta, J. (2015). Chem Sci J. 6, 2-12.
  4. Kachroo, M., Panda, R. & Yadav, Y. (2014). Der Pharma Chemica, 6, 352-359.
  5. Kong, K. H., Chen, Y., Ma, X., Chui, W. K. & Lam, Y. (2004). J. Comb. Chem. 6, 928-933.
  6. Özdemir, N. & Türkpençe, D. (2013). Computational and Theoretical Chemistry 1025, 35–45.
  7. Bruker (2002). SAINT-NT V6.22a (Including SADABS). Data Reduction Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Bruker (2001). SMART-NT V5.624. Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
  10. Sheldrick, G. M. (2015). Acta Cryst., C71, 8–15.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
  12. Stoyanov, S., Petkov, I., Antonov, L., Stoyanova, T., Karagiannidis, P. & Aslanidis, P. (1990). Canadian Journal of Chemistry, 68, 1482-1489. 7.
  13. Trivedi, M. K., Branton, A., Trivedi, D., Shettigar, H., Bairwa, K. & Jana, S. (2015). Nat Prod Chem Res, 3:186.
  14. Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Organic Letters, 5, 1657-1659.
  15. Zhang, L., Peng, X.-M., Damu, G. L. V., Geng, R.-X. & Zhou, C.-H. (2014). Medicinal Research Reviews, 34, 340-437.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP