JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 68 No 1 (2023): Journal of the Chilean Chemical Society
Original Research Papers

MONKEYPOX DISEASE TREATMENT BY TECOVIRIMAT ADSORBED ONTO SINGLE-WALLED CARBON NANOTUBE THROUGH DRUG DELIVERY METHOD

Fatemeh Mollaamin
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
Sara Shahriari
Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Majid Monajjemi
Department of Chemical engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Published May 3, 2023
Keywords
  • Monkeypox disease; tecovirimat; (5,5) armchair CNT; drug delivery; DFT; IR; NMR
How to Cite
Mollaamin, F., Shahriari, S., & Monajjemi, M. (2023). MONKEYPOX DISEASE TREATMENT BY TECOVIRIMAT ADSORBED ONTO SINGLE-WALLED CARBON NANOTUBE THROUGH DRUG DELIVERY METHOD. Journal of the Chilean Chemical Society, 68(1), 5796-5801. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2147

Abstract

In this work, it has been investigated the Monkeypox disease which occurs in both humans and animals by infection with a double-stranded DNA virus having the symptoms consisting of fever, fatigue, headache, and muscle pains like flu. Tecovirimat drug can be applied in prohibition of monkeypox virus through adsorbing onto surface of single-walled carbon nanotube (SWCNT) as the drug delivery method due to direct electron transfer principle which has been studied by density functional theory (DFT) methods.

Therefore, it has been accomplished the B3LYP/6-311+G (2d,p) level of theory to estimate the susceptibility of SWCNT for adsorbing tecovirimat through nuclear magnetic resonance and thermodynamic parameters. In other words, the data explained that the feasibility of using SWCNT and tecovirimat becomes the norm in drug delivery system which has been achieved by quantum calculations due to physico-chemical properties of NMR and IR methodologies.

2147.JPG

References

  1. Petersen, B.W.; Damon, I.K. 348.Smallpox, monkeypox and other poxvirus infections. In Goldman, Lee; Schafer, Andrew I. (eds.). Goldman-Cecil Medicine. Vol. 2 (26th ed.). Philadelphia: Elsevier. 2020, pp. 2180-2183. ISBN 978-0-323-53266-2.
  2. Sutcliffe, Catherine G.; Rimone, Anne W.; Moss, William J. 32.2. Poxviruses. In Ryan, Edward T.; Hill, David R.; Solomon, Tom; Aronson, Naomi; Endy, Timothy P. (eds.). Hunter's Tropical Medicine and Emerging Infectious Diseases E-Book (Tenth ed.). Edinburgh: Elsevier. 2020, pp. 272-277. ISBN 978-0-323-55512-8.
  3. Harris, E. What to Know About Monkeypox. JAMA. 2022. 327, 2278-2279, https://doi.org/10.1001/jama.2022.9499.
  4. Simpson, K.; Heymann, D.; Brown, C.S.; Edmunds, W. J.; Elsgaard, J.; Fine, P.; Hochrein, H.; Hoff, N.A.; Green, A.; Ihekweazu, C.; Jones, T.C.; Lule, S.; Maclennan, J.; McCollum, A.; Mühlemann, B.; Nightingale, E.; Ogoina, D.; Ogunleye, A.; Petersen, B.; Powell, J.; Quantick, O.; Rimoin, A.W.; Ulaeato, D.; Wapling, A. Human monkeypox - After 40 years, an unintended consequence of smallpox eradication. Vaccine.2020, 38 ,5077–5081. https://doi.org/10.1016/j.vaccine.2020.04.062.
  5. Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLOS Neglected Tropical Diseases. 2022, 16, e0010141. https://doi.org/10.1371/journal.pntd.0010141.
  6. Barlow, G.; Irving, W.L.; Moss, P.J. 20. Infectious disease. In Feather, Adam; Randall, David; Waterhouse, Mona (eds.). Kumar and Clark's Clinical Medicine (10th ed.). Elsevier. 2020, p. 517. ISBN 978-0-7020-7870-5.
  7. Hutin, Y.J.; Williams, R.J.; Malfait, P.; Pebody, R.; Loparev, V.N.; Ropp, S.L.; et al. Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerging Infectious Diseases. 2001, 7 ,434-438. https://doi.org/10.3201/eid0703.010311.
  8. Minasov, G.; Shuvalova, L.; Dubrovska, I.; Flores, K.; Grimshaw, S.; Kwon, K.; Anderson, W.F.; 1.52 Angstrom Crystal Structure of A42R Profilin-like Protein from Monkeypox Virus Zaire-96-I-16. RCSB PDB. 2014. https://doi.org/10.2210/pdb4QWO/pdb.
  9. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5.
  10. Grosenbach, D.W.; Honeychurch, K.; Rose, E.A.; Chinsangaram, J.; Frimm, A.; Maiti, B.; Lovejoy, C.; Meara, I.; Long, P.; Hruby, D.E. Oral Tecovirimat for the Treatment of Smallpox. N Engl J Med. 2018, 379, 44-53. https://doi.org/10.1056/NEJMoa1705688.
  11. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey,S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation.2012, 2, 2–11. https://doi.org/10.4103/2230-973X.96920.
  12. Li, J.; Zeng, M.; Shan, H.; Tong, C. (2017-08-23). Microneedle Patches as Drug and Vaccine Delivery Platform. Current Medicinal Chemistry. 2017, 24, 2413–2422. https://doi.org/10.2174/0929867324666170526124053.
  13. Tekade, R.K. Basic fundamentals of drug delivery. 2018, ISBN 978-0-12-817910-9. OCLC 1078149382.
  14. Allen, T. M. Drug Delivery Systems: Entering the Mainstream. Science. 2004, 303, 1818-1822. https://doi.org/10.1126/science.1095833.
  15. Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P.Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy. 2019, 4, 33. https://doi.org/10.1038/s41392-019-0068-3.
  16. Cao, X.; Deng, W.; Fu, M. et al., Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: in vitro release kinetics and in vitro/in vivo correlations in beagle dogs. European Journal of Pharmaceutical Sciences, 2013, 48, 64-71. https://doi.org/10.1016/j.ejps.2012.10.012.
  17. Ghaffarian, R.; Bhowmick, T.; and Muro, S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1, Journal of Controlled Release, 2012, 163, 25-33. https://doi.org/10.1016/j.jconrel.2012.06.007.
  18. Zhang, L.; Xue, H.; Cao, Z.; Keefe, A.; Wang, J.; and Jiang, S. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance, Biomaterials, 2011, 32, 4604-4608. https://doi.org/10.1016/j.biomaterials.2011.02.064.
  19. Ghalandari, B.; Monajjemi, M.; Mollaamin, F. Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery. J.Comput.Theor.Nanosci 2011, 8, 1212-1219, https://doi.org/10.1166/jctn.2011.1801.
  20. Monajjemi, M.; Honaparvar, B.; Khalili Hadad, B.; Ilkhani, A.; Mollaamin, F. Thermo-Chemical
  21. Investigation and NBO Analysis of Some anxileotic as Nano- Drugs. African journal of pharmacy and pharmacology 2010, 4, 521-529.
  22. Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Fuller. Nanotub. Carbon Nanostructures.,2011, 19, 251-261, https://doi.org/10.1080/15363831003721757.
  23. Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle Patches as Drug and Vaccine Delivery Platform. Current Medicinal Chemistry. 2017,24 ,2413-2422. https://doi.org/10.2174/0929867324666170526124053.
  24. Monajjemi, M.; Baheri, H.; Mollaamin, F. A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given. Journal of Structural Chemistry 2011, 52, 54-59, https://doi.org/10.1134/S0022476611010070.
  25. Tahan, A.; Mollaamin, F.; Monajjemi, M. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russian Journal of Physical Chemistry A 2009, 83, 587-597,https://doi.org/10.1134/S003602440904013X.
  26. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; et al. Gaussian, Inc., Wallingford CT. 2009.
  27. (a) Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B, 1988, 37, 785-789. http://dx.doi.org/10.1103/PhysRevB.37.785. (b) Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem.,1994, 9 , 11623-11627. https://doi.org/10.1021/j100096a001.
  28. Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory. 3-64, 93-104, 2nd edition, Wiley-VCH, Weinheim, Federal Republic of Germany, 2000.
  29. (a) Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913. (b) Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A. 1988, 38, 3098-3100. http://dx.doi.org/10.1103/PhysRevA.38.3098.
  30. Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). J.Comput.Theor.Nanosci, 2011, 8,763-768. https://doi.org/10.1166/jctn.2011.1750
  31. Monajjemi, M.; Najafpour, J.; Mollaamin, F. (3,3)4 Armchair carbon nanotube in connection with PNP and NPN junctions: Ab Initio and DFT-based studies. Fullerenes Nanotubes and Carbon Nanostructures 2013, 21, 213-232, https://doi.org/10.1080/1536383X.2011.597010.
  32. Cramer, C.J.; Truhlar, D.G. PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. J.Comp.Chem. 1992, 13, 1089-1097. https://doi.org/10.1002/jcc.540130907.
  33. Liotard, D.A.; Hawkins, G.D.; Lynch, G.C.; Cramer, C.J.; Truhlar, D.G. Improved methods for semiempirical solvation models. J.Comp.Chem.1995, 16, 422-440. https://doi.org/10.1002/jcc.540160405.
  34. Chambers, C.C.; Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. J.Phys.Chem. 1996, 100, 16385-16398. https://doi.org/10.1021/jp9610776.
  35. Giesen, D.J.; Gu, M.Z.; Cramer, C.J.; Truhlar, D.G. A Universal Organic Solvation Model. J.Org.Chem. 1996, 61, 8720-8721. https://doi.org/10.1021/jo9617427.
  36. Onsager, L.J. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486-1493. https://doi.org/10.1021/ja01299a050.
  37. Tomasi, J. Cavity and reaction field: “robust” concepts. Perspective on “Electric moments of molecules in liquids”. Theor.Chem.Acc. 2000, 103,196-199. https://doi.org/10.1007/s002149900044.
  38. Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Phys Chem Liquids 2011, 49, 561-571, https://doi.org/10.1080/00319101003698992.
  39. Mollaamin, F.; Monajjemi, M.; Salemi, S.; Baei, M.T. A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 182-196,https://doi.org/10.1080/15363831003782932.
  40. Monajjemi, M.; Farahani, N.; Mollaamin, F. Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranes. Phys. Chem. Liq 2012, 50, 161-172. https://doi.org/10.1080/00319104.2010.527842.
  41. Rauch, L.; Hein, R.; Biedermann, T.; Eyerich, K.; Lauffer, F. Bisphosphonates for the Treatment of Calcinosis Cutis-A Retrospective Single-Center Study. Biomedicines 2021, 9, 1698. https://doi.org/10.3390/biomedicines9111698.
  42. Fry,R.A.; Kwon,K.D.; Komarneni, S.; Kubicki, J.D.; Mueller,K.T. Solid-State NMR and Computational Chemistry Study of Mononucleotides Adsorbed to Alumina, Langmuir, 2006, 22, 9281-9286. https://doi.org/10.1021/la061561s.
  43. Monajjemi, M.; Mahdavian, L.; Mollaamin, F.; Khaleghian, M. Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study. Russ. J. Inorg. Chem 2009, 54, 1465-1473. https://doi.org/10.1134/S0036023609090216.
  44. Monajjemi, M.; Robert, W.J.; Boggs, J.E. NMR contour maps as a new parameter of carboxyl's OH groups in amino acids recognition: A reason of tRNA–amino acid conjugation. Chemical Physics 2014, 433, 1-11, https://doi.org/10.1016/j.chemphys.2014.01.017.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP