Vol 67 No 4 (2022): Journal of the Chilean Chemical Society
Original Research Papers


Galo Cárdenas-Triviño
Facultad de Ingeniería, DIMAD, Escuela de Ingeniería Química, Universidad del Bío-Bío, Av. I. Collao 1202, Concepción, Chile and Centro Nacional de Excelencia para la Industria de la Madera CENAMAD, Pontificia Universidad Católica de Chile, Santiago,7820436, Chile
Nelson Linares-Bermudez
Facultad de Ingeniería, DIMAD, Escuela de Ingeniería Química, Universidad del Bío-Bío, Av. I. Collao 1202, Concepción, Chile
Luis Vergara-González
Facultad de Ciencias, Departamento Biología y Química, Universidad San Sebastián, Lientur 1457, Concepción, Chile
Gerardo Cabello-Guzmán
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando Mey, Chillán, Chile
Javier Ojeda-Oyarzún
Facultad de Medicina Veterinaria, Universidad Austral de Chile, Independencia 641, Valdivia, Región de los Ríos, Chile
Mario Nuñez-Decap
Facultad de Ingeniería, Departamento de Ingeniería Civil y Ambiental, Universidad del Bío-Bío, Av. I. Collao 1202, Concepción, Chile
Ramon Arrue-Muñoz
Centro Nacional de Excelencia para la Industria de la Madera CENAMAD, Pontificia Universidad Católica de Chile, Santiago,7820436, Chile
Published January 9, 2023
  • Antibacterial,
  • biomedical applications,
  • nanoparticles,
  • polyvinyl alcohol,
  • SMAD,
  • wound healing
  • ...More
How to Cite
Cárdenas-Triviño, G., Linares-Bermudez, N., Vergara-González, L., Cabello-Guzmán, G., Ojeda-Oyarzún, J., Nuñez-Decap, M., & Arrue-Muñoz, R. (2023). SYNTHESIS AND WOUND HEALING PROPERTIES OF POLYVINYL ALCOHOL FILMS DOPED WITH METAL NANOPARTICLES OF Cu AND Ag. Journal of the Chilean Chemical Society, 67(4), 5667-5673. Retrieved from


The skin recovery (wound healing) properties of materials based on polyvinyl alcohol (PVA) doped with metal nanoparticles (PVA-MNPs) and their chemical and physical characterization is reported. The synthesis of copper and silver metal nanoparticles supported in PVA was performed by Solvated Metal Atom Dispersed (SMAD) method using 2-ethoxyethanol as solvent. The average size of metal nanoclusters (PVA-Cu = 77 nm,  PVA-Ag = 72 nm) was determined by TEM and the distribution of the inorganic phase in the hybrid material was analyzed by SEM-EDX. TGA performed in synthetic air atmosphere shows an improvement in the thermal stability by addition of nanometals to pure polymer, with the copper composite showing a higher thermo resistive capacity than the rest. Antibacterial activity against ATCC bacterial strains of Escherichia coli (E.C.), Staphylococcus aureus (S.A.), Staphylococcus epidermidis (S.E.) and Pseudomonas aeruginosa (P.A.) was determined. The silver compound showed antibacterial activity against all tested microorganisms, while the copper compound was active against S.E. Toxicological and wound healing tests were performed in Sprague Dawley rats with infested injuries on the back which were treated with PVA films doped with copper and silver. The recovery of injures infested with S. aureus is reported. This type of material could be used for biomedical applications, such as skin recovery processes in infected wounds or type I and II burns.




  1. X. Qu, P. J. J. Alvarez, and Q. Li, Water Research, 47, 3931, (2013),
  2. M. Chakravarty and A. Vora, Drug Delivery and Translational Research, 11, 748, (2021),
  3. M. Usman et al., Science of The Total Environment, 721, 137778, (2020),
  4. S. H. Nile, V. Baskar, D. Selvaraj, A. Nile, J. Xiao, and G. Kai, Nano-Micro Letters, 12, 45, (2020),
  5. P. Liu et al., Advanced Materials, 34, 2201197, (2022),
  6. S. H. Ko et al., Nano Letters, 7, 1869, (2007),
  7. J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, Environment International, 37, 517, (2011),
  8. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, and P. Kumar, Journal of Nanobiotechnology, 16, 84, (2018),
  9. Y. Ofir, B. Samanta, and V. M. Rotello, Chemical Society Reviews, 37, 1814, (2008),
  10. S. H. Lee and B.-H. Jun, International Journal of Molecular Sciences , 20. 2019.
  11. H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri Aval, M. Kouhi, and A. Akbarzadeh, Artificial Cells, Nanomedicine, and Biotechnology, 44, 410, (2016),
  12. A. Abdal Dayem et al., International Journal of Molecular Sciences , 18. 2017.
  13. M. Rai, S. D. Deshmukh, A. P. Ingle, I. R. Gupta, M. Galdiero, and S. Galdiero, Critical Reviews in Microbiology, 42, 46, (2016),
  14. Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach, Journal of Nanobiotechnology, 15, 65, (2017),
  15. G. Cárdenas-Triviño, M. J. Saludes-Betanzo, and L. Vergara-González, International Journal of Polymer Science, 2020, 5920941, (2020),
  16. G. Rivera-Hernández, M. Antunes-Ricardo, P. Martínez-Morales, and M. L. Sánchez, International Journal of Pharmaceutics, 600, 120478, (2021),
  17. Y. Amaregouda and K. Kamanna, Indian Chemical Engineer, 1, (2022),
  18. E. A. Kamoun, E.-R. S. Kenawy, and X. Chen, Journal of Advanced Research, 8, 217, (2017),
  19. M. Bahadoran, A. Shamloo, and Y. D. Nokoorani, Scientific Reports, 10, 7342, (2020),
  20. I. Zulkiflee and M. B. Fauzi, Biomedicines , 9. 2021.
  21. S. Baghaie, M. T. Khorasani, A. Zarrabi, and J. Moshtaghian, Journal of biomaterials science. Polymer edition, 28, 2220, (2017),
  22. T. Zhong, G. S. Oporto, J. Jaczynski, and C. Jiang, BioMed Research International, 2015, 456834, (2015),
  23. J. Pulit-Prociak et al., Journal of Nanobiotechnology, 18, 148, (2020),
  24. A. Chaturvedi, A. K. Bajpai, J. Bajpai, and A. Sharma, Designed Monomers and Polymers, 18, 385, (2015),
  25. S. Hajji et al., Process Safety and Environmental Protection, 111, 112, (2017),
  26. B.-L. Wang, X.-S. Liu, Y. Ji, K.-F. Ren, and J. Ji, Carbohydrate Polymers, 90, 8, (2012),
  27. M. S. Sarwar, M. B. K. Niazi, Z. Jahan, T. Ahmad, and A. Hussain, Carbohydrate Polymers, 184, 453, (2018),
  28. G. Cárdenas, R. Oliva, P. Reyes, and B. L. Rivas, Journal of Molecular Catalysis A: Chemical, 191, 75, (2003),
  29. S. Amsarajan and B. R. Jagirdar, European Journal of Inorganic Chemistry, 2019, 1374, (2019),
  30. A. Vasil’kov et al., Gels, 7. 2021.
  31. G. Cardenas-Trivino, O. Godoy-Guzman, and G. Contreras, Journal of the Chilean Chemical Society, 54, 6, (2009).
  32. G. Cardenas-Trivino, Journal of the Chilean Chemical Society, 50, 603, (2005).
  33. J. Tacx, H. M. Schoffeleers, A. G. M. Brands, and L. Teuwen, POLYMER, 41, 947, (2000),
  34. G. Cárdenas, V. Sáez, and C. Cruzat, Journal of Cluster Science, 28, 1127, (2017),
  35. M. C. Neuburger, Zeitschrift für Physik, 67, 845, (1931),
  36. H. C. A. Murthy, T. Desalegn, M. Kassa, B. Abebe, and T. Assefa, Journal of Nanomaterials, 2020, 3924081, (2020),
  37. S. R. Esa, R. Yahya, A. Hassan, and G. Omar, Ionics, 23, 319, (2017),
  38. M. Wei, N. Lun, X. Ma, and S. Wen, Materials Letters, 61, 2147, (2007),
  39. B. Rodríguez et al., Materials Research Express, 8, 45002, (2021),
  40. G. Cardenas-Trivino and E. Sepulveda-Bustamante, Journal of the Chilean Chemical Society, 66, 5110, (2021).
  41. H. H. Huang et al., Langmuir, 13, 172, (1997),
  42. M. S. Rubina et al., Applied Surface Science, 366, 365, (2016),
  43. S. Mallakpour and M. Dinari, Journal of Reinforced Plastics and Composites, 32, 217, (2012),
  44. S. Peng et al., Royal Society Open Science, 4, (2017),
  45. A. Ballistreri, S. Foti, G. Montaudo, and E. Scamporrino, Journal of Polymer Science: Polymer Chemistry Edition, 18, 1147, (1980),
  46. J. E. Moreno-Marcelino, E. Gutierrez-Segura, A. R. Vilchis-Nestor, E. Castro-Longoria, and G. López-Téllez, Polymer Testing, 90, 106668, (2020),
  47. I. V Pukhova, I. A. Kurzina, K. P. Savkin, O. A. Laput, and E. M. Oks, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 399, 28, (2017),
  48. I. O. Ali, T. M. Salama, M. I. Mohamed, M. B. M. Ghazy, and M. F. Bakr, Iranian Polymer Journal, 26, 511, (2017),
  49. J. M. Burkstrand, Journal of Vacuum Science & Technology, 16, 363, (1979),
  50. I. N. Shabanova, N. S. Terebova, and G. V Sapozhnikov, JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 195, 43, (2014),
  51. G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, International Journal of Antimicrobial Agents, 33, 587, (2009),
  52. G. Borkow and J. Gabbay, Current Medicinal Chemistry, 12. 2163, 2005.
  53. M. Valodkar, R. N. Jadeja, M. C. Thounaojam, R. V Devkar, and S. Thakore, Materials Chemistry and Physics, 128, 83, (2011),
  54. C. D. Calvano, R. A. Picca, E. Bonerba, G. Tantillo, N. Cioffi, and F. Palmisano, Journal of Mass Spectrometry, 51, 828, (2016),
  55. S. Meghana, P. Kabra, S. Chakraborty, and N. Padmavathy, RSC Advances, 5, 12293, (2015),
  56. C. Carlson et al., The Journal of Physical Chemistry B, 112, 13608, (2008),
  57. M. Ahamed, R. Posgai, T. J. Gorey, M. Nielsen, S. M. Hussain, and J. J. Rowe, Toxicology and Applied Pharmacology, 242, 263, (2010),
  58. M. J. Piao et al., Toxicology Letters, 201, 92, (2011),
  59. A. Lin, BioEssays, 25, 17, (2003),
  60. N. Miura and Y. Shinohara, Biochemical and Biophysical Research Communications, 390, 733, (2009),
  61. J. Liu and R. H. Hurt, Environmental Science & Technology, 44, 2169, (2010),
  62. A. B. Stefaniak et al., International Journal of Occupational and Environmental Health, 20, 220, (2014),
  63. V. De Matteis et al., Nanomedicine: Nanotechnology, Biology and Medicine, 11, 731, (2015),
  64. B. Cunningham, A. M. Engstrom, B. J. Harper, S. L. Harper, and M. R. Mackiewicz, Nanomaterials , 11. 2021.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP