JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 2 (2022): Journal of the Chilean Chemical Society
Original Research Papers

AN ELECTROCHEMICAL STUDY OF THE COBALT ELECTRODEPOSITION ONTO A CARBON FIBER ULTRAMICROELECTRODE

Luis Humberto Mendoza-Huizar
Universidad Autónoma del Estado de Hidalgo
Jair A. Corona-Castro
Universidad Autónoma del Estado de Hidalgo, Academic Area of Chemistry, Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, México
Giaan A. Álvarez-Romero
Universidad Autónoma del Estado de Hidalgo, Academic Area of Chemistry, Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, México
Margarita Rivera
Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
Clara H. Rios-Reyes
Universidad La Salle Pachuca, Calle Belisario Domínguez 202, Centro, Pachuca de Soto, Hgo., 42000, México
L.E. Bañuelos-García
Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Av. Ramón López Velarde 801, Zacatecas, 98600, Mexico
E. García-Sánchez
Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Av. Ramón López Velarde 801, Zacatecas, 98600, Mexico
Published June 24, 2022
Keywords
  • cobalt,
  • electrodeposition,
  • ultramicroelectrode,
  • carbon fiber
How to Cite
Mendoza-Huizar, L. H., Corona-Castro, J. A., Álvarez-Romero, G. A., Rivera, M., Rios-Reyes, C. H., Bañuelos-García, L., & García-Sánchez, E. (2022). AN ELECTROCHEMICAL STUDY OF THE COBALT ELECTRODEPOSITION ONTO A CARBON FIBER ULTRAMICROELECTRODE. Journal of the Chilean Chemical Society, 67(2), 5500-5502. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/2055

Abstract

A kinetic study of the cobalt electrodeposition onto carbon fiber ultramicroelectrodes of 11 µm of diameter from an aqueous solution containing CoCl2 0.01 M + NH4Cl 0.1 M was conducted at overpotential conditions. From the voltamperometric studies, it was found that the value of the diffusion coefficient is 1.2x10-5 cm2 s-1. The analysis of the current density transients indicates the existence of a 3D nucleation and growth process. Also, it was observed that the values of the number of active nucleation sites increases as the value of the applied potential decreases.

2055.JPG

References

  1. G. Herzer, Magn. Hysteresis Nov. Magn. Mater. (1997), 38, 711–730.
  2. https://doi:10.1007/978-94-011-5478-9_77.
  3. J. L. Su, M. Chen, J. Lo, R. E. Lee, J. Appl. Phys. (1998), 63(8), 4020.
  4. https://doi.org/10.1063/1.340536
  5. H. Y Ho, W. Chen, W., T. Y. Fu, S. J. Chen, IEEE Trans. Magn. (2014), 50, 1-4.
  6. https://doi.org/10.1109/TMAG.2013.2277758
  7. M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. (1997), 7, 1779–1783.
  8. https://doi.org/10.1039/A700125H
  9. H. Yamaura, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, J. Electrochem. Soc. (1997), 144, L158-L160. https://doi.org/10.1149/1.1837710
  10. P. Nkeng, J. F. Koenig, J. L. Gautier, P. Chartier, G. Poillerat, J. Electroanal. Chem. (1996), 402, 81–89. https://doi.org/10.1016/0022-0728(95)04254-7
  11. Y. Okamoto, T. Imanaka, S. Teranishi, J. Catal. (1980), 65, 448–460. https://doi.org/10.1016/0021-9517(80)90322-X
  12. K. Ramachandran, C. O. Oriakhi, M. M. Lerner, V. R. Koch, Mater. Res. Bull. (1996), 31, 767–772. https://doi.org/10.1016/0025-5408%2896%2900070-0
  13. M. G. Hutchins, P. J. Wright, P. D. Grebenik, Sol. Energy Mater. (1987), 16, 113–131.
  14. https://doi.org/10.1016/0165-1633(87)90013-X
  15. X. Liu, R. Yi, Y. Wang, G. Qiu, N. Zhang, X. Li, J. Phys. Chem. C (2006), 111, 163–167.
  16. https://doi.org/10.1021/jp0643597
  17. M. Palomar, I. González, A. Soto, E. Arce, J. Electroanal. Chem. (1998), 443, 125–136.
  18. https://doi.org/10.1016/S0022-0728(97)00496-8
  19. N. Ramos, L. H. Mendoza, C. H. Rios, C. Galán, Adv. Mat. Res. (2014), 976, 144-147.
  20. https://doi.org/10.4028/www.scientific.net/AMR.976.144
  21. M. Palomar, J. Aldana, L. Botello, E. Arce, M. Ramírez, J. Mostany, M. Romero Electrochim. Acta (2017), 241, 162–169.
  22. https://doi.org/10.1016/j.electacta.2017.04.126
  23. A. Frank, P. Sumodjo, Electrochim. Acta (2014), 132, 75–82.
  24. https://doi.org/10.1016/j.electacta.2014.03.130
  25. S. Floate, M. Hyde, R. G. Compton, J. Electroanal. Chem. (2002), 523, 49–63.
  26. https://doi.org/10.1016/S0022-0728(02)00709-X
  27. Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochim. Acta, (2011), 58, 757–763.
  28. https://doi.org/10.1016/j.electacta.2011.10.033
  29. C. H. Ríos, L. H. Mendoza, M. Rivera, J. Solid State Electrochem. (2010), 14, 659-668.
  30. https://doi.org/10.1007/s10008-009-0816-3
  31. E. Gómez, E. Valles, J. Appl. Electrochem. (2002), 32(6), 693–700.
  32. https://doi.org/10.1023/A:1020194532136
  33. F. Pagnanelli, P. Altimari, M. Bellagamba, G. Granata, E. Moscardini, P. G. Schiavi, L. Toro, Electrochim. Acta (2015), 155, 228–235.
  34. https://doi.org/10.1016/j.electacta.2014.12.112
  35. H. Harti, J. L. Bubendorff, A. Florentin, C. Pirri, J. Ebothe, J. Cryst. Growth, (2011), 319, 79–87.
  36. https://doi.org/10.1016/j.jcrysgro.2011.01.028
  37. S. Banbur-Pawlowska, K. Mech, R. Kowalik, P. Zabinski, Appl. Surf. Sci. (2016), 388, 805–808.
  38. https://doi.org/10.1016/j.apsusc.2016.04.005
  39. M. Ibrahim, R. Al Radadi, Mater. Chem. Phys. (2015), 151, 222–232.
  40. https://doi.org/10.1016/j.matchemphys.2014.11.058
  41. V. Graciano, U. Bertocci, G. Stafford, J. Electrochem. Soc. (2019), 166, D3246-D3253.
  42. https://doi.org/10.1149/2.0311901jes
  43. L. Cagnon, A. Gundel, T. Devolder, A. Morrone, C. Chappert, J. E. Schmidt, P. Allongue, Appl. Surf. Scien., (2000), 164, 22–28.
  44. D. Lützenkirchen-Hecht, D. Hamulić, R. Wagner, I. Milošev, Radiat. Phys. Chem. (2020), 175, 108113.
  45. https://doi.org/10.1016/j.radphyschem.2018.12.033
  46. L. H. Mendoza, J. Robles, M. E. Palomar, J. Electroanal. Chem. (2002), 521, 95-106.
  47. https://doi.org/10.1016/S0022-0728(02)00659-9
  48. L. H. Mendoza, J. Robles, M. E. Palomar, J. Electroanal. Chem. (2003), 545, 39-45.
  49. https://doi.org/10.1016/S0022-0728(03)00087-1
  50. M. Ohba, T. Scarazzato, D. Espinosa, J. Tenorio, Z. Panossian, Miner. Met. Mater. Ser. (2019), 967–976.
  51. https://doi:10.1007/978-3-030-05861-6_95.
  52. S. Rehim, S. Wahaab, M. Ibrahim, M. Dankeria, J. Chem. Technol. Biotechnol, (1998), 73, 369–376.
  53. https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<369::AID-JCTB971>3.0.CO;2-P
  54. B. Tzaneva, A. Naydenov, S. Todorova, V. Videkov, V. Milusheva, P. Stefanov, Electrochim. Acta, (2016), 191, 192–199.
  55. https://doi.org/10.1016/j.electacta.2016.01.063
  56. P. Schiavi, P. Altimari, R. Zanoni, F. Pagnanelli, Electrochim. Acta. (2016), 220, 405–416.
  57. https://doi.org/10.1016/j.electacta.2016.10.117
  58. P. Schiavi, P. Altimari, F. Pagnanelli, E. Moscardini, L. Toro, Chem. Eng. Trans. (2015), 43, 673–678.
  59. https://doi.org/10.3303/CET1543113
  60. E. Herrero, J. Li, H. D. Abruña, Electrochim. Acta, (1999), 44, 2385–2396.
  61. https://doi.org/10.1016/S0013-4686(98)00362-4
  62. F. Bento, L. Mascaro, J. Braz. Chem. Soc. (2002), 13, 502–509.
  63. https://doi.org/10.1590/S0103-50532002000400015
  64. C. H. Ríos, L. H. Mendoza, M. Rivera, J. Solid State Electrochem. (2009), 14(4), 659–668.
  65. https://doi.org/10.1007/s10008-009-0816-3
  66. N. Myung, K. H. Ryu, P. T. Sumodjo, K. Nobe, Electrochem. Soc. Proceed. (1998), 270–281.
  67. S. El Rehim, M. A. Ibrahim, M. M. Dankeria, J. Appl. Electrochem. (2002), 32(9), 1019–1027.
  68. https://doi.org/10.1023/A:1020945031502
  69. M. Peña, R. Celdran, R. Duo J. Electroanal. Chem. (1994), 367, 85–92.
  70. https://doi.org/10.1016/0022-0728(93)03028-N
  71. B. Zheng, L. Wong, L. Wu, Z. Chen, Int. J. Electrochem., (2016), 2016, 1-11.
  72. https://doi.org/10.1155/2016/4318178
  73. A. Dimitrov, S. Hadzi, K. Popov, M. Pavlovic, V. Radmilovic, J. Appl. Electrochem. (1998), 28(8), 791-796.
  74. https://doi.org/10.1023/A:1003462924591
  75. T. Berzins, P. Delahay, J. Am. Chem. Soc., (1953), 75(3), 555-559.
  76. https://doi.org/10.1021/ja01099a013
  77. A. J. Bard, L. Faulkner, Introduction and overview of electrode processes. Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, (2001), 850.
  78. B. R. Scharifker, G. Hills, Electrochim. Acta, (1983), 28(7), 879-889.
  79. https://doi.org/10.1016/0013-4686(83)85163-9
  80. B. R. Scharifker, J. Mostany, J. Electroanal. Chem. Inter. Electrochem., (1984), 177(1–2). 13-23.
  81. https://doi.org/10.1016/0022-0728(84)80207-7
  82. A. N. Correia, S. A. Machado, J. C. Sampaio, L. A. Avaca, J. Electroanal. Chem. (1996), 407, 37–43.
  83. https://doi.org/10.1016/0022-0728(95)04458-2
  84. S. M. Silva, C. R. Alves, A. N. Correia, R. M. Martins, A. L. R. Nobre, S. A. Machado, L. H. Mazo, L. A. Avaca. Quim. Nova, (2005), 21, 78–85.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP