JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 2 (2017): Journal of the Chilean Chemical Society
Original Research Papers

ELECTROCHEMICAL AND PHOTO-ELECTROCHEMICAL PROCESSES OF METHYLENE BLUE OXIDATION BY TI/TIO2 ELECTRODES MODIFIED WITH FE-ALLOPHANE

Nicole Lezana
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Francisco Fernández-Vidal
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Cristhian Berríos
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile
Elizabeth Garrido-Ramírez
Centro de Investigacion para la Sustentabilidad, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello
Published June 16, 2017
Keywords
  • Ti/TiO2,
  • Fe-Allophane,
  • Methylene blue,
  • Electrochemical and photoelectrochemical oxidation
How to Cite
Lezana, N., Fernández-Vidal, F., Berríos, C., & Garrido-Ramírez, E. (2017). ELECTROCHEMICAL AND PHOTO-ELECTROCHEMICAL PROCESSES OF METHYLENE BLUE OXIDATION BY TI/TIO2 ELECTRODES MODIFIED WITH FE-ALLOPHANE. Journal of the Chilean Chemical Society, 62(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/201

Abstract

This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte.

SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ~20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ~88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.

References

  1. E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora. Appl. Clay Sci., 47, 182 (2010).
  2. Ch. Comninellis, G. Chen. Electrochemistry for the Environment. 1st ed. New York. Springer (2009).
  3. J. Pereira, V. Vilar, M. Borges, O. González, S. Esplugas, R. Boaventura. Solar Energy, 85, 2732 (2011).
  4. Zangeneh, A.A.L. Zinatizadeh , M. Habibi, M. Akia, M. Hasnain Isa. J. Ind. Eng. Chem., 26, 1 (2015).
  5. H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu. J. Alloys. Comp., 413, 302 (2006).
  6. A.N. Ökte, D. Tuncel, A.H. Pekcan, T. Özden. 2014. J. Chem. Technol. Biotechnol., 89, 1155 (2014).
  7. Y. Hara-kudo, Y. Segawa, K. Kimura. Chemosphere, 62, 149 (2006).
  8. Y-H. Lin, T-K. Tseng, H. Chu. Appl. Catl. A-Gen., 469, 221 (2014).
  9. M. Guarino, A. Costa, M. Porro. Biores. Technol., 99, 2650 (2008).
  10. Y. Cong, Z. Li, Y. Zhang, Q. Wang, Q. Xu. Chem. Eng. J., 191, 356 (2012).
  11. K. Nakata, A. Fujishima. J. Photoch. Photobio. C. 13, 169 (2012).
  12. K. Nakata, T. Ochiai, T. Murakami, A. Fujishima. Electrochim. Acta, 84, 103 (2012).
  13. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan. J. Hazard. Mater., 252-253, 233 (2013).
  14. O. Akhavan. Appl. Surf. Sci., 257,1724 (2010).
  15. F. Mazille, A. Lopez, C. Pulgarin. Appl. Catal., B. 90, 321 (2009).
  16. F. Mazille, C. Schoettl, C. Pulgarin . Appl. Catal. B. 89, 635 (2009).
  17. R.L. Parffit. Clay Miner., 44, 135 (2009).
  18. E.G. Garrido-Ramirez, M.V. Sivaiah, J. Barrault, S. Valange, B.K.G. Theng, M.S. Ureta-Zañartu, M.L. Mora. Microporous Mesoporous Mater., 162, 189 (2012).
  19. E.G. Garrido-Ramírez, M.L. Mora, J.F. Marco, M.S. Ureta-Zañartu. Appl. Clay Sci., 86, 153 (2013).
  20. H. Nishikiori, S. Hashiguchi, M. Ito, R.A. Setiawan. Appl. Catal., B. 147, 246 (2014).
  21. Y. Ono, K-I. Katsumata. Appl. Clay Sci., 90, 61 (2014).
  22. Zhang, Minghua Zhou, Xinmin Yu, Liang Ma, Fangke Yu. 2015. Electrochim. Acta, 160, 254 (2015).
  23. M.L. Mora, M. Escudey, G. Galindo. Bol. Soc. Chil. Quim., 39, 237 (1994).
  24. F. Fernández, C. Berríos, E. Garrido-Ramírez, N. Escalona, C. Gutiérrez, M.S. Ureta-Zañartu. J. Appl. Electrochem., 44, 1295 (2014).
  25. J.M. Macak, L.V. Taveira, H. Tsuchiya, K. Sirotna,·J. Macak, P. Schmuki. J. Electroceramics., 16, 29 (2006).
  26. H. Khan, R. Khan, N. Matsue, T. Henmi. J. Environ. Sci. Technol., 2, 22 (2009).
  27. I.M. Butterfield I, P.A. Christensen, T.P. Curtis, J. Gunlazuardi. Water Research., 31, 675 (1997).
  28. M.A. Hasnat; I.A. Siddiquey; A. Nuruddin. Dyes and Pigments., 66, 185 (2005).
  29. J.A. Anta. Curr. Opin. Colloid Interface Sci., 17, 124 (2012).
  30. S. Palmas; A. Da Pozzo; F. Delogu; M. Mascia; A. Vacca; G. Guisbiers. J. Power Sources. 204, 265 (2012).
  31. G. Sepúlveda; E. Besoain. Agricultura Técnica (Chile). 43, 223 (1983).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP