JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 2 (2017): Journal of the Chilean Chemical Society
Original Research Papers

Co2SnO4/CARBON PASTE ELECTRODE AS ELECTROCHEMICAL SENSOR FOR HYDROGEN PEROXIDE

Nerly Mosquera
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de Los Materiales
María J. Aguirre
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de Los Materiales
Domingo Ruiz-León
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de Los Materiales
Camilo García
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de Los Materiales
Roxana Arce
Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de Los Materiales
S. Bollo
Centro de Investigación de Procesos Redox (CiPRex) and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
Published June 16, 2017
Keywords
  • Hydrogen peroxide,
  • Carbon paste electrode,
  • Co2SnO4
How to Cite
Mosquera, N., Aguirre, M. J., Ruiz-León, D., García, C., Arce, R., & Bollo, S. (2017). Co2SnO4/CARBON PASTE ELECTRODE AS ELECTROCHEMICAL SENSOR FOR HYDROGEN PEROXIDE. Journal of the Chilean Chemical Society, 62(2). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/200

Abstract

Hydrogen peroxide (H2O2) plays an important role as an intermediary in different biological, chemical and environmental systems. It has been widely used as an oxidizing and antimicrobial agent, in germicides production and textile and paper bleaching. However, it is well known, that H2O2 is a possible responsible in many diseases and is a chemical agent that threatens the environment, so it becomes important to detect peroxide with high accuracy. In this study, carbon paste electrode (CPE), modified with Co2SnO4 was synthesized and tested. It was successfully obtained a non-enzymatic H2O2 detection type sensor, based on Co2SnO4/

CPE composite, showing good linear response in concentration of H2O2 in the range of 88 – 605.9 μM.

References

  1. R. Chaisuksant, T. Chomsook, N. Manthong, K. Kalcher, low cost Hydrogen peroxide sensor from manganese oxides modified pencil graphite electrode, 20, 81-84 (2016).
  2. M. Darder, K. Takada, F. Pariente, E. Lorenzo, H.D. Abruna; Dithiobissiccinidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor, 71, 5530-5537 (1999).
  3. P. Kovacic, A Proposed Role for Hydrogen Peroxide in Carcinogenesis, 60, [5], 283-290 (1960).
  4. N. Klassen, D. Marchington, H. McGovan, H2O2 determination by the I3- method and by KMnO4 titration, 66, 2921-2925 (1994).
  5. C. Chih Hsu,Y. Rong Lo,Y. Chian Lin, Y. Cen Shi, P. Lung Li A Spectrometric Method for Hydrogen Peroxide Concentration Measurement with a Reusable and Cost-Efficient Sensor,15, [10], 25716–25729 (2015).
  6. N Burmistrovaa, R. Meier , S. Schreml , A. Duerkop, Reusable Optical Sensing Microplate for Hydrogen Peroxide Using a Fluorescent 2 Photoinduced Electron Transfer Probe (HP Green), 193, 799-805 (2014).
  7. H. Pang, F. Gao, Q. Chen, R. Liu, Q. Liu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis, 41, 5862 – 5868 (2012).
  8. U. Pinkernell , S. Effkemann, U. Karst, Simultaneous HPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide, 69 , [17], 3623–3627 (1997).
  9. A. Saleh, Hydrogen Peroxide Biosensors Based on Horseradish Peroxidase and Hemoglobin, 55, 1-11 (2013).
  10. F. Tian, B. Xu, L. Zhu, G. Zhu, Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol–gel derived composite carbon electrode, 443, [1], 9–16 (2001).
  11. A. Uzunoglu, S. Song, L. Stanciua, A Sensitive Electrochemical H2O2 Sensor Based on PdAg-Decorated Reduced Graphene Oxide Nanocomposites, 163 [7] B379-B384 (2016).
  12. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, CuO Nanospheres Based Nonenzymatic Glucose Sensor, 20, 2482-2486 (2008).
  13. S. Asim, S. Bahadar, A. Asiri; Electrochemical sensor for H2O2 using a glassy carbon electrode modified with a nanocomposite consisting of graphene oxide, cobalt(III) oxide, horseradish peroxidase and nafion, DoI: 10.1007/s00604-016-1942-0 (2016).
  14. Co−doped stannates ⁄reduced graphene composites: Effect of cobalt substitution on the electrochemical sensing of hydrogen peroxide, Sensors and Actuators B: Chemical, 250, 412-419 (2017).
  15. Bonan An, Qiang Ru, Shejun Hu, Xiong Song, Juan Li; Facile synthesis and electrochemical performance of Co2SnO4/Co3O4 nanocomposite for lithium-ion batteries; Materials Research Bulletin; 60, 640–647 (2014).
  16. Chang Chen, Qiang Ru, Shejun Hy, Bonan An, Xiong Song, Xianhua Hou; Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries; Electrochimical Acta 151; 203–213 (2015).
  17. K. Kalcher, Chemically Modified Carbon Paste Electrodes in Voltammetric Analysis; 2, 419-433 (1990).
  18. Sensor based on carbon paste in electrochemycal analysis: A review with particular emphasis on the period 1990-1993. Kalcher*, K., Kauffmann, J., & Wang, J.; Electroanalysis, 7, [1], 5-21 (1995).
  19. J. Amilcar; Sintetización e incorporación de la fase Co2SnO4 en varistores cerámicos basados en SnO2 Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica; Tesis Grado de Doctor (2013).
  20. A. Navrotsky, O. Kleppa; The thermodynamic of catión distributions in simple spinels, Journal of Inorganic and nuclear Chemistry; 2701-2714 (1967).
  21. F. Fuenzalida; Electrodos de pasta de carbono modificados con liquidos ionicos derivados del hexafluorfosfato de N-Octilpiridinio: Efecto del sustituyente en electrocatálisis; Universidad Santiago de Chile, Facultad Quimica y Biologia; Tesis doctoral (2015).
  22. Y. Zhang, Z. Wang, Y. Ji, S. Liu, T. Zhang, Synthesis of Ag nanoparticle– carbon nanotube–reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection; 5, 39037–39041(2015).
  23. Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang, X. Wang; Enhanced nonenzymatic hydrogen peroxide sensing with reduced grapheneoxide/ferroferric oxide nanocomposites; 89; 417 - 421 (2012).
  24. F. Xu, M. Deng, G. Li, S. Chen, L. Wang; Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing; 88; 59 – 65 (2013).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP