JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 1 (2022): Journal of the Chilean Chemical Society
Reviews

CONJUGATED FATTY ACIDS (CFAS) PRODUCTION VIA VARIOUS BACTERIAL STRAINS AND THEIR APPLICATIONS. A REVIEW

TARIQ AZIZ
Khyber Medical University Peshawar Pakistan
ABID SARWAR
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
Zubaida Daudzai
School of Bioresources and technology, King Mongkut's university of Technology Thonburi, Bangkok, Thailand
Jalal ud Din
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
Ahsan Saidal
Khyber Medical University Peshawar Pakistan
Mustajab Ghani
Khyber Medical University Peshawar Pakistan
Ayaz Ali Khan
Department of Biotechnology University of Malakand
Sumaira Naz
Department of Biochemistry University of Malakand
Muhammad Shahzad
Khyber Medical University Peshawar Pakistan
Published March 14, 2022
Keywords
  • CFA,
  • Ruminal Production,
  • CLA,
  • CLNA,
  • LAB
How to Cite
AZIZ, T., SARWAR, A., Daudzai, Z., Din, J. ud, Saidal, A., Ghani, M., Khan, A. A., Naz, S., & Shahzad, M. (2022). CONJUGATED FATTY ACIDS (CFAS) PRODUCTION VIA VARIOUS BACTERIAL STRAINS AND THEIR APPLICATIONS. A REVIEW. Journal of the Chilean Chemical Society, 67(1), 5445-5452. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1991

Abstract

Conjugated fatty acids (CFAs) mainly consists of Conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs). CFAs received significant importance because of their anti-carcinogenic, anti-obesity, anti-diabetic, lipid/ energy metabolism modulatory effects and some other health promoting properties. Though, their concentration in food stuff is inadequate for any therapeutic application to be implemented. For a biotechnological perspective, microbial production of these CFAs has been extensively explored as an alternative and various bacterial strains of Propionbacterium, Lactobacillus and Bifidobacterium have shown promising results. This review will amass and recap available data concerning CLA and CLNA production by various bacterial strains via various enzymatic reaction behind all the processes. Numerous studies on CFA biochemical pathways are important to understand and discourse the metabolic mechanisms behind this process showing all the gene products that could be involved in the production. Among these bacterial strains few have shown the modulation of lipid metabolism in-vivo, further research should be focused on this topic which would help us to understand the role of gut microbiota on human health and future foods sustainability.

 

1991.JPG

References

  1. . Jiankang Wang, Linxiao Han, Daoying Wang, Pengpeng Li, Fereidoon Shahidi. Conjugated Fatty Acids in Muscle Food Products and Their Potential Health Benefits: A Review. J Agr Food Chem. 68 (47), 13530-13540, (2020).
  2. https://doi.org/10.1021/acs.jafc.0c05759
  3. . Białek M, Białek A, Czauderna M. Maternal and early postnatal diet supplemented with conjugated linoleic acid isomers affect lipid profile in hearts of offspring rats with mammary tumors. Animals. 10, 464, (2020).
  4. https://doi.org/10.3390/ani10030464
  5. . Rossignoli CP, Dechandt CRP, Souza AO et al. Effects of intermittent dietary supplementation with conjugated linoleic acid and fish oil (EPA/ DHA) on body metabolism and mitochondrial energetics in mice. J. Nutr. Biochem. 60,16-23, (2018). https://doi.org/10.1016/j.jnutbio.2018.07.001
  6. . Tsuboyama-Kasaoka N, Takahashi M, Tanemura K et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 49, 1534-1542, (2000).
  7. https://doi.org/10.2337/diabetes.49.9.1534
  8. . DeClercq V, Taylor C, G Wigle J, Wright B, Tworek L, Zahradka P. Conjugated linoleic acid improves blood pressure by increasing adiponectin and endothelial nitric oxide synthase activity. J. Nutr. Biochem, 23, 487-493, (2012).
  9. https://doi.org/10.1016/j.jnutbio.2011.02.003
  10. . Yamamoto T, Shiraki M. Anti-inflammatory effect of conjugated linoleic acid in patients with Crohn’s disease. Clin. Nutr. 32, 147-147 (2013).
  11. https://doi.org/10.1016/j.clnu.2012.10.009
  12. . Park Y, Pariza MW. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int, 40(3), 311-323, (2007).
  13. https://doi.org/10.1016/j.foodres.2006.11.002
  14. . Lin Yang , Ying Cao, Jing-Nan Chen, Zhen-Yu Chen. Oxidative Stability of Conjugated Linolenic Acids. J Agr Food Chem, 57(10), 4212-4217, (2009).
  15. https://doi.org/10.1021/jf900657f
  16. . Schmid A, Collomb M, Sieber R, Bee G. Conjugated linoleic acid in meat and meat products: A review. Meat Sci, 73, 29-41(2006).
  17. https://doi.org/10.1016/j.meatsci.2005.10.010
  18. . Nagao K, Yanagita T. Bioactive lipids in metabolic syndrome. PROG LIPID RES, 47(2), 127-146, (2008). https://doi.org/10.1016/j.plipres.2007.12.002
  19. . Ying Cao , Jingnan Chen, Lin Yang, Zhen-Yu Chen. Differential incorporation of dietary conjugated linolenic and linoleic acids into milk lipids and liver phospholipids in lactating and suckling rats. J. Nutr Biochem, 20 (9), 685-693, (2009).
  20. https://doi.org/10.1016/j.jnutbio.2008.06.011
  21. . Hoang Ngoc Ai Tran , Soo-Young Bae, Bang-Ho Song et al (2010). Pomegranate (punica granatum) seed linolenic acid isomers: concentration-dependent modulation of estrogen receptor activity. ENDOCR RES, 35(1), 1-16 (2010).
  22. https://doi.org/10.3109/07435800903524161
  23. . Kemp P, Lander DJ. Hydrogenation in vitro of alpha linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J Gen Microbiol. 130, 527-33, (1984).
  24. . Harfoot CG, Hazlewood GP. Lipid metabolism in the rumen. In the rumen microbial ecosystem Elsevier Science Publishers, London, UK, 285-322, (1998).
  25. https://www.springer.com/gp/book/9780751403664
  26. . Aziz T, Sarwar A, Fahim M, Al Dalali S, Ud Din Z, Ud Din J, Xin Z, Jian Z, Pacheco Fill T, Zhennai Y. In silico characterization of linoleic acid biotransformation to rumenic acid in food derived Lactobacillus plantarum YW11. Acta Biochim Pol. 67(1):99-109, (2020). https://doi.org/10.18388/abp.2020_5095
  27. . Jenkins TC. Lipid metabolism in the rumen. J Dairy Sci, 76: 382-426, (1993). https://doi.org/10.3168/jds.s0022-0302(93)77727-9
  28. . Fukuda S, Suzuki Y, Murai M, Asanuma N, Hino T. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. J Dairy Sci, 89, 1043-1051, (2006).
  29. https://doi.org/10.3168/jds.s0022-0302(06)72171-3
  30. . Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela K, Bauman DE. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J Nutr, 130, 2285-2291 (2000).
  31. https://doi.org/10.1093/jn/130.9.2285
  32. . Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr, 76, 504 -510, (2002). https://doi.org/10.1093/ajcn/76.3.504
  33. . Lock AL, Garnsworthy PC. Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cow’s milk. Anim Sci. J. 74, 163-76, (2002).
  34. http://dx.doi.org/10.1017/S1357729800052334
  35. . Destaillats F, Trottier JP, Galvez JM, Angers P. Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci, 88, 3231-3239, (2005).
  36. https://doi.org/10.3168/jds.s0022-0302(05)73006-x
  37. . Gorissen L, Leroy F, De Vuyst L, De Smet S, Raes K. Bacterial production of conjugated linoleic and linolenic acid in foods: a technological challenge. Crit Rev Food Sci Nutr, 55, 1561-1574, (2015).
  38. https://doi.org/10.1080/10408398.2012.706243
  39. . Fontes AL, Pimentel LL, Simoes CD, Gomes AMP, Rodriguez-Alcala LM. Evidences and perspectives in the utilization of CLNA isomers as bioactive compound in foods. Crit Rev Food Sci Nutr, 57: 2611-2622, (2017).
  40. https://doi.org/10.1080/10408398.2015.1063478
  41. . Van Nieuwenhove C, Teran V, Gonzalez S. Conjugated linoleic and linolenic acid production by bacteria: development of functional foods. In Rigobelo EC (ed), Probiotics. InTech, London, United Kingdom. 55-80, (2012).
  42. https://doi.org/10.5772/50321
  43. . Polan CE, McNeill JJ, Tove SB. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol, 88, 1056 -1064, (1964).
  44. https://doi.org/10.1128/jb.88.4.1056-1064.1964
  45. . Shigenobu Kishino, Michiki Takeuchi et al.Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. PNAS USA 110, 17808-17813, (2013).
  46. https://doi.org/10.1073/pnas.1312937110
  47. . Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett, 579, 5157-5162, (2005).
  48. https://doi.org/10.1016/j.febslet.2005.08.028
  49. . Zhang X, Li M, Wei D, Wang X, Chen X, Xing L. Disruption of the fatty acid Δ6-desaturase gene in the oil-producing fungus Mortierella isabellina by homologous recombination. Curr Microbiol, 55: 128 -134, (2007).
  50. https://doi.org/10.1007/s00284-006-0641-1
  51. . Needleman P, Turk J, Jakschik B, Morrison A, Lefkowith J. (1986) Arachidonic acid metabolism. Annu Rev Biochem, 55, 69-102, (1986).
  52. https://doi.org/10.1146/annurev.bi.55.070186.000441
  53. . Greenway D, Dyke K. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol, 115: 233-245 (1979).
  54. https://doi.org/10.1099/00221287-115-1-233
  55. . Margarida RG Maia, Lal C Chaudhary, Charles S Bestwick et al. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol, 10, 52 (2010).
  56. https://doi.org/10.1186/1471-2180-10-52
  57. . Jiang J, Bjorck L, Fonden R. Production of conjugated linoleic acid by dairy starter cultures. J Appl. Microbiol, 85 (1), 95-102, (1998).
  58. https://doi.org/10.1046/j.1365-2672.1998.00481.x
  59. . Xu S, Boylston T, Glatz B. Effect of lipid source on probiotic bacteria and conjugated linoleic acid formation in milk model systems. J Am Oil Chem Soc, 81, 589-95, (2004). http://dx.doi.org/10.1007/s11746-006-0946-z
  60. . R John Wallace , Lal C Chaudhary, Nest McKain, et al. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett, 265, 195-201, (2006).
  61. https://doi.org/10.1111/j.1574-6968.2006.00487.x
  62. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci, 86, 397-412, (2008).
  63. https://doi.org/10.2527/jas.2007-0588
  64. . Rainio A, Vahvaselka M, Laakso S. Cell-adhered conjugated linoleic acid regulates isomerization of linoleic acid by resting cells of Propionibacterium freudenreichii. Appl. Microbiol, 60(4), 481-4, (2002).
  65. https://doi.org/10.1007/s00253-002-1151-0
  66. . Rainio A, Vahvaselkä M, Suomalainen T, Laakso S. Production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii. Lait. 82(1), 91-101, (2002). https://doi.org/10.1051/lait:2001008
  67. Lin TY, Lin CW, Wang YJ. Linoleic Acid Isomerase Activity in Enzyme Extracts from Lactobacillus acidophilus and Propionibacterium freudenreichii subsp. Shermanii. J. Food Sci, 67, 502-5, (2002).
  68. https://scholars.lib.ntu.edu.tw/handle/123456789/88433
  69. Verhulst A, Janssen G, Parmentier G, Eyssen H. Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Syst Appl Microbiol, 9, 12-15, (1987).
  70. https://doi.org/10.1016/S0723-2020(87)80049-8
  71. Ando A, Ogawa J, Kishino S, Shimizu S. (2003). CLA production from ricinoleic acid by lactic acid bacteria. J Am Oil Chem Soc, 80, 889-894, (2003).
  72. https://doi.org/10.1007/s11746-003-0790-1
  73. Ando A, Ogawa J, Kishino S, Shimizu S. Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551, Enzyme Microb Tech, 35, 40-45, (2004). https://doi.org/10.1016/j.enzmictec.2004.03.013
  74. Hennessy AA, Barrett E, Paul Ross R, Fitzgerald GF, Devery R, Stanton C. The production of conjugated alpha-linolenic, gamma-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids, 47(3), 313-27, (2012).
  75. https://doi.org/10.1007/s11745-011-3636-z
  76. Rosson RA, Grund AD, Deng MD, Sanchez-Riera F. Linoleate Isomerase. World Patent, WO-99/32604 A1, (1999).
  77. Kishino S, Ogawa J, Ando A, Shimizu S. Conjugated α-linolenic acidproduction from α- linolenic acid by Lactbacillus plantarum AKU1009a. EUR J LIPID SCI TECH, 105, 572-7, (2003). https://doi.org/10.1002/ejlt.200300806
  78. Lee SO, Hong GW, Oh DK. Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri, Biotechnol Prog, 81, 1081-1084, (2003).
  79. https://doi.org/10.1021/bp0257933
  80. Hernandez-Mendoza A, Lopez-Hernandez A, Hill CG, Garcia HS. Bioconversion of linoleic acid to conjugated linoleic acid by Lactobacillus reuteri under different growth conditions. J Chem Technol Biotechnol, 84, 180-185, (2009).
  81. https://doi.org/10.1002/jctb.2021
  82. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S. Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc, 79:159-163, (2002).
  83. https://doi.org/10.1007/s11746-002-0451-4
  84. Yang B, Chen H, Gu Z, Tian F, Ross RP, Stanton C. Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food-derived lactobacilli, J Appl Microbiol, 117, 430-439, (2014).
  85. https://doi.org/10.1111/jam.12524
  86. Khosravi A, Safari M, Khodaiyan F, Gharibzahedi SMT. Bioconversion enhancement of conjugated linoleic acid by Lactobacillus plantarum using the culture media manipulation and numerical optimization. J Food Sci Technol Mys, 52, 5781-5789, (2015).
  87. https://dx.doi.org/10.1007%2Fs13197-014-1699-6
  88. Van Nieuwenhove CP, Oliszewski R, Gonzalez SN, Perez Chaia AB. Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Lett Appl Microbiol, 44(5), 467-74, (2007). https://doi.org/10.1111/j.1472-765x.2007.02135.x
  89. . Xu H, Lee HY, Hwang B, Nam JH, Kang HY, Ahn J. Kinetics of microbial hydrogenation of free linoleic acid to conjugated linoleic acids. J Appl Microbiol, 105(6): 2239-47, (2008).
  90. https://doi.org/10.1111/j.1365-2672.2008.03937.x
  91. . Gorissen L, Weckx S, Vlaeminck B, Raes K, De Vuyst L, De Smet S, Leroy F. Linoleate isomerase activity occurs in lactic acid bacteria strains and is affected by pH and temperature. J Appl. Microbiol. 111(3), 593-606, (2011).
  92. https://doi.org/10.1111/j.1365-2672.2011.05087.x
  93. . Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 68(1), 219-26, (2002).
  94. https://doi.org/10.1128/aem.68.1.219-226.2002
  95. . Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article: bifidobacteria as probiotic agent’s physiological effects and clinical benefits. liment. Pharmacol. Ther, 22(6), 495-512, (2005).
  96. https://doi.org/10.1111/j.1365-2036.2005.02615.x
  97. . Saarela M, Virkajärvi I, Alakomi H-L, Sigvart-Mattila P, Mättö J. Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. International Dairy Journal, 16(12), 1477-82, (2006).
  98. . Vinderola G, Binetti A, Burns P, Reinheimer J.. Cell viability and functionality of probiotic bacteria in dairy products. Front Microbiol, 2, 70, (2011). https://doi.org/10.3389/fmicb.2011.00070
  99. . Vinderola G, de los Reyes-Gavilán C, Reinheimer J. Probiotics and prebiotics in fermented dairy products. In Contemporary Food Engineering, 601-34, (2009).
  100. . Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl. Microbiol. 94(1), 138-45, (2003).
  101. https://doi.org/10.1046/j.1365-2672.2003.01814.x
  102. . Oh DK, Hong GH, Lee Y, Min S, Sin HS, Cho SK. Production of conjugated linoleic acid by isolated Bifidobacterium strains. World J Microbiol Biotechnol, (19), 907-12, (2003). https://doi.org/10.1023/B:WIBI.0000007313.90368.0c
  103. . Chung SH, Kim IH, Park HG, Kang HS, Yoon CS, Jeong HY. Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation. J Agr Food Chem, 56, 3311-3316, (2008).
  104. https://doi.org/10.1021/jf0730789
  105. . Hui Gyu Park, Sung Do Cho, Jun Ho Kim, et al. Characterization of conjugated linoleic acid production by Bifidobacterium breve LMC 520. J Agr Food Chem, 57, 7571-7575, (2009).
  106. https://doi.org/10.1021/jf9014813
  107. . Barrett E, Ross RP, Fitzgerald GF, Stanton C. Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures, Appl Environ Microbiol, 73(7), 2333, (2007).
  108. https://doi.org/10.1128/aem.01855-06
  109. . Gorissen Lara , Katleen Raes, Stefan Weckx, et al. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species, Appl Microbiol Biotechnol, 87, 2257-2266, (2010).
  110. https://doi.org/10.1007/s00253-010-2713-1
  111. . Gursoy O, Seckin AK, Kinik O, Karaman AD. The effect of using different probiotic cultures on conjugated linoleic acid (CLA) concentration and fatty acid composition of white pickle cheese. Int J Food Sci Nutr, 63(5), 610, (2012).
  112. https://doi.org/10.3109/09637486.2011.643295
  113. . Rodriguez-Alcala LM, Braga T, Xavier Malcata F, Gomes A, Fontecha J. Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques. Food Chem, 125, 1373-1378, (2011).
  114. https://doi.org/10.1016/j.foodchem.2010.10.008
  115. . Chen Y, Liang N, Curtis JM, Ganzle MG. Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites, Front Microbiol, 7, (2016). https://doi.org/10.3389/fmicb.2016.01561
  116. . Yang B, Chen H, Song Y, Chen YQ, Zhang H, Chen W. (2013). Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases, Biotechnol Lett 35, 75-81. https://doi.org/10.1007/s10529-012-1044-y
  117. . Eva Rosberg-Cody, Alena Liavonchanka, Cornelia Göbel, et al. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection, BMC Biochem, 12, 9, (2011). https://doi.org/10.1186/1471-2091-12-9
  118. . Verhulst AG, Semjen U.Meerts G. Janssen G. Parmentier S. Asselberghs H.Van Hespen Eyssen H. Biohydrogenation of linoleic acid by Clostridium sporogenes, Clostridium bifermentans, Clostridium sordellii and Bacteroides sp. FEMS Microbiol Lett, 31, 255-259, (1985).
  119. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.941.6331&rep=rep1&type=pdf
  120. . Peng SS, Deng MD, Grund AD, Rosson RA. Purification and characterization of a membrane-bound linoleic acid isomerase from Clostridium sporogenes, Enzyme Microb Tech, 40, 831-839, (2007).
  121. http://dx.doi.org/10.1016/j.enzmictec.2006.06.020
  122. . Lin TY, Lin CW, Lee CH. conjugated linoleic acid concentration as affected by lactic cultures and added linoleic acid, Food Chem, 67, 1-5, (1999).
  123. https://agris.fao.org/agris-search/search.do?recordID=US201302954993
  124. . Kim YJ, Liu RH. Increase of conjugated linoleic acid content in milk by fermentation with lactic acid bacteria. J Food Sci, 67: 1731-1737, (2006).
  125. https://doi.org/10.1111/j.1365-2621.2002.tb08714.x
  126. . Xu S, Boylston TD, Glatz BA. Effect of inoculation level of Lactobacillus rhamnosus and yogurt cultures on conjugated linoleic acid content and quality attributes of fermented milk products. J Food Sci, 71, C275-C280, (2006).
  127. https://doi.org/10.1111/j.1750-3841.2006.00010.x
  128. . Ross GR, Gauffin Cano P, Gusils León CH, Medina RB, González SN, Van Nieuwenhove CP. Lactic acid bacteria activities to promote health benefits. Multidisciplinary approaches on food science and nutrition for the 21st century. Research signpost ed, 155-74, (2011). http://dx.doi.org/10.5772/50321
  129. . Han Jin Cho , Woo Kyoung Kim, Jae In Jung. et al. Trans-10, cis-12, not cis- 9, trans-11, conjugated linoleic acid decreases ErbB3 expression in HT-29 human colon cancer cells. World J Gastroenterol. 11(33), 5142-50, (2005).
  130. https://dx.doi.org/10.3748%2Fwjg.v11.i33.5142
  131. . Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids. 32(8), 853-8, (1997).
  132. https://doi.org/10.1007/s11745-997-0109-x
  133. . Masao Yamasaki , Atsushi Ikeda, Mariko Oji, Yoko Tanaka, Akira Hirao, Masaaki Kasai, Toshio Iwata, Hirofumi Tachibana, Koji Yamada. Modulation of body fat and serum leptin levels by dietary conjugated linoleic acid in Sprague-Dawley rats fed various fat-level diets. Nutrition. 19(1), 30-5, (2003).
  134. https://doi.org/10.1016/s0899-9007(02)00842-0
  135. . Vassilis Mougiosa, Antonis Matsakasa, Anatoli Petridoua. et al. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J. Nutr. Biochem,12(10), 585-94, (2001).
  136. https://doi.org/10.1016/s0955-2863(01)00177-2
  137. . Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat in healthy exercising humans. J INT MED RES, 29(5), 392-6, (2001).
  138. https://doi.org/10.1177/147323000102900503
  139. . Van Nieuwenhove CP, Gauffin Cano P, Pérez-Chaia AB, González SN. Effect of functional buffalo cheese on fatty acid profile and oxidative status of liver and intestine of mice. J. Med. Food, 14(4), 420-7, (2011). https://doi.org/10.1089/jmf.2010.0061
  140. . Hui Young Lee , Jong-Hwan Park, Seung-Hyeok Seok, et al. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochimica et Biophysica Acta. 1761(7), 736-44, (2006).
  141. https://doi.org/10.1016/j.bbalip.2006.05.007
  142. . Lee K, Paek K, Lee HY, Park JH, Lee Y. Antiobesity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol, 103(4), 1140-6, (2007).
  143. https://doi.org/10.1111/j.1365-2672.2007.03336.x
  144. . Rebecca Wall, R Paul Ross, Fergus Shanahan. et al. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr, 89(5), 1393-401(2009).
  145. https://doi.org/10.3945/ajcn.2008.27023
  146. . Edionwe AO, Kies C. Comparison of palm and mixtures of refined palm and soybean oils on serum lipids and fecal fat and fatty acid excretions of adult humans. Plant Foods Hum. Nutr, 56(2),157-65, (2001).
  147. https://doi.org/10.1023/a:1011136724577
  148. . Lee SO, Hong GW, Oh DK. Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri, Biotechnol Prog, 81, 1081-1084, (2003).
  149. https://doi.org/10.1021/bp0257933

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP