JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 4 (2021): Journal of the Chilean Chemical Society
Original Research Papers

GENERAL GROUP VI TRANSITION NANOSTRUCTURED METAL OXIDES AND THEIR INCLUSION INTO SOLID MATRICES BY A SOLUTION-SOLID APPROACH

Carlos Diaz
Departamento de Química, Facultad de Química, Universidad de Chile, La Palmeras 3425, Nuñoa, casilla 653, Santiago de Chile, Chile.
Maria Luisa Valenzuela Valdes
Universidad Autonoma de Chile
Published December 29, 2021
Keywords
  • Solid-State,
  • Nanoestructures,
  • pyrolysis
How to Cite
Diaz, C., Valenzuela Valdes, M. L., Zepeda, L., Valenzuela, C., & Herrera, P. (2021). GENERAL GROUP VI TRANSITION NANOSTRUCTURED METAL OXIDES AND THEIR INCLUSION INTO SOLID MATRICES BY A SOLUTION-SOLID APPROACH. Journal of the Chilean Chemical Society, 66(4), 5380-5386. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1923

Abstract

A facile and general solution//solid-state (SSS) approach to the synthesis of nanostructured metal oxides Cr2O3, MoO3 and WO3 was investigated. They are made from solid-state pyrolysis of the metal- macromolecular precursors PS-co-4-PVP●MCln and Chitosan●MCln with M= Cr, Mo and W, which were easily prepared by direct reaction of the salts CrCl3, MoCl4 and WCl4   with the respective polymer. The size and morphology of the products, the nanostructured oxides Cr2O3, MoO3 and WO3 depend on the polymer and on the coordination degree of the precursor. Cr2O3 as well as WO3, prepared from this method were included in silica and Titania matrix using an also solution//solid-state approximation. The nanoparticles of Cr2O3 and WO3 are in general distributed with uniformity within the amorphous silica. A probable formation mechanism of the Cr2O3, MoO3 and WO3 nanoparticles was proposed.  The nanocomposites   Cr2O3//SiO2 and WO3//SiO2 could be useful materials in catalysis.

 

1923.JPG

References

  1. D.Worle, A.D. Pomaglio (2003). “Metal Complexes and Metals in Macromolecules” Wiley-VCH
  2. C. Díaz and M.L. Valenzuela (2006) in Polymer Research Developments, “Coordination of Organometallic Fragments to Polyphospahzenes Containing Side Groups with Donor Atoms”. R.K. Bregg Ed. Nova Science Publishers, New York Pp 1-22.
  3. G.A. Carriedo, F.J. Garcia-Alonso, J.L. García Alvarez, C. Diaz, N. Yutronic (2002) Polyhedron 21, 2587-2592.
  4. G.A. Carriedo, F.J. Garcia-Alonso, P. A. González, C. Diaz, N. Yutronic (2002) Polyhedron 21, 2579-2586.
  5. C. Diaz, P. Castillo, G.A. Carriedo, P. Gomez-Elipe, F.J. Garcia-Alonso (2002). Macromolec. Phys. and Chem. 203, 1918-1925.
  6. C. Díaz, M.L. Valenzuela (2006). Macromolecules 39, 103-111.
  7. C. Díaz, M.L. Valenzuela (2006). Journal Inorganic and Organometallic Polymer and Materials 16, 419-435.
  8. C. Díaz, M.L. Valenzuela, L. Zuñiga, C. O’Dwyer (2009). Journal Inorganic and Organometallic Polymer and Materials. 19, 507- 520.
  9. C Díaz, M.L. Valenzuela, V. Lavayen, C. O’Dwyer (2012). Inorganic Chem. 51, 6228-6236.
  10. C. Zhang, J. Chen, Y. Zeng, X. Rui, J. Zhu, W. Zhang, Ch.Xu, T.M. Lim, H.H.Hng, Q. Yan (2012). Nanoscale 4, 3718-3724.
  11. P. Poizot, L.S. Grugeon, L. Dupont, J-M Tarascon (2000). Nature 407, 496-499.
  12. Y. Li, A. Somorjai (2010). Nano.Lett. 10, 289-2295.
  13. F. Bozon-Verduraz, F. Fievet, J.Y. Piquemal, R. Brayner, K. Kabouss, Y. Soumare, G. Viau, G. Shaffev (2009). Braz. J. Phys. 134-140.
  14. A. Tricoli, M. Righettoni, A. Teleki (2010) Angew. Chem. Int. Ed. 49, 7632-7659.
  15. P. Kamat (2012). J. Phy.Chem. C 116, 11849-11851.
  16. H. Huang, B. Liang, X, Wang, D. Chen, G. Shen (2012). Journal of Material Chemistry 22, 13428- 13445.
  17. J.S. Hu, L.S. Zhong, W.G. Song, L.J. Wan (2008). Adv. Mater. 20, 2977-2982.
  18. Ch. Yan, D. Xue (2006). J. Phys.Chem. B 110, 1581-1586.
  19. N. Pinna, M. Niederberger (2008). Angew. Chem. Int.Ed. 47, 5292-5304.
  20. M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez (2004). Chem.Rev. 104, 4063-4104.
  21. M.L. Khan, A. Glaria, C. Pages, M. Monge, L.S. Macary, A. Maisonnat, B. Chaudret (2009). J. Mat. Chem. 19, 4044-4060.
  22. J.P. Jolivet, S. Cassignon, C. Chanea, D. Chiche, D. Durupthy, D. Portehault, (2010). C.R Chimie 13, 40-51.
  23. C. Díaz, M.L. Valenzuela (2010) in Encyclopedia of Nanoscience and Nanotechnology, “Metallic Nanostructures Using Oligo and Polyphosphazenes as Template or Stabilizer in Solid State” H.S Nalwa Ed., American Scientific Publishers 16, 239-256.
  24. A. Orlov, A. Roy, M. Lehmann, M. Driess and S. Polarz (2007). J. Am. Chem. Soc. 129, 371-375.
  25. G. Walkers, I.P. Parkin (2009). J. Mater. Chem. 19, 574-590.
  26. M. Meilikhov, K. Yusenko, D. Esken, S.A. Turner, G. Van Tendolo, R.A. Fischer (2010). Eur. J. Inorg. Chem. 3701-3714.
  27. B. Teo, X. Sun (2007). Chem. Rev. 107, 1454-1532.
  28. G.B. Khomutov, V.V. Kislov, M.N. Antipirina, R.V. Gainutdinov, S.P. Gubin, A.Y Obydenov, S.A. Pavlov, A.A. Rakhnyanskaya, A.N. Sergeev-Cherenkov, E.S. Soldatov, D.B. Suyatin, A.L. Toltikhina, A. S. Trifonov, T.V. Yurova (2003). Microelectronic Engineering 69, 373-383.
  29. K. Lee, W.S.Seo, Park (2003). J. Am. Chem. Soc. 125, 3408-3409.
  30. S. U. Son, Y.Jang, K.Y. Yoon, Ch. An, Y. Hwang, J-G.Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, T. Hyeon (2005). Chem Comm. 86-88.
  31. D. Parvis, E.M.Kazemeini, A.M. Rashidi, Kh. Josan (2010). J. Nanopart. Res. 12, 1509-1521.
  32. S.M. El-Sheikh, R.M. Mohamed, A.O. Fouad (2009). J. Alloys Comp. 482, 302-307.
  33. M. Aghaie-Khafri, M.H. Kakaei (2012). Powder Technology 222, 152-160.
  34. D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sun, L. Gao (2011). J. Mater. Chem. 21, 9332-9342.
  35. H.M. Martínez, J. Torres, L.D. López-Carreño, M.E. Rodríguez-García (2013). Materials Characterization 75, 184 – 193.
  36. X. Huang, H. Liu, X. Zhang, H. Jiang (2015). ACS Appl. Mater. Interfaces 7, 27845−27852
  37. R. Huirache-Acuñaa, F. Paraguay-Delgadoc, M.A. Albiterd, J. Lara-Romerod, R. Martínez-Sánchezc (2009). Materials Characterization 60, 932 – 937
  38. C. Díaz, P. Castillo, M. L. Valenzuela (2005). Journal of Cluster Science 16, 515-522.
  39. K. Desai, K. Kit, J. Jiajie, S. Zivanovic (2008). Biomacromolecules 9, 1000-1006.
  40. Q. Li, E.T. Dunn, E.W. Grandmaison, M.F.A. Goosen (1992). J. Bioactive and Compatible Polymers 7, 370-397.
  41. I. Aranaz, M. Mengibar, R. Harris, I. Paños, B.Miralles, N.Acosta, G. Galed and A. Heras (2009). Current Chemical Biology 3, 203-230.
  42. R.B. Hernandez, O. Reyes, A.L. R. Merce (2007). J. Braz. Chem.Soc. 18, 1388-1396.
  43. I.S. Lima, C. Airoldi (2004). Thermochim. Acta 421, 133-139.
  44. E. Taboada, G. Cabrera, G. Cardenas (2003). J. Chil. Chem. Soc. 48,
  45. K. Ogawa, K. Oka (1993). Chem. Mater. 5, 726-728.
  46. S. Schlick (1986). Macromolecules 19, 192-195.
  47. J. Brugnerotto, J. Lizardi, F.M. Goycoolea, W.Arguelles-Monal, J. Desbrieres, M. Rinaudo (2001). Polymer 42, 3569-3580.
  48. H. Huang, X. Yang (2004). Carbohydrate Research 339, 2627-2631.
  49. Y. Ding, X.H. Xia and C. Zhang (2006). Nanotechnology 17, 4156-4162.
  50. M. Adlim, M.A. Bakar, K. Kong Live, J. Ismail (2004). J. Mol. Cat. 212, 141-149.
  51. K. Okitsu, Y. Mizukoshi, T. A. Yamamoto, Y. Maeda and Y. Nagata (2007). Mater. Lett. 61, 3429-3431.
  52. K.H. Yang, Y.Ch. Liu, T.Ch. Hsu, H.I. Tsai (2010). Mater.Research Bulletin 45, 63-68.
  53. I. Zhitomirsky, A. Hashambhoy (2007). J. Mater. Proc. Tech. 191, 68-72.
  54. H. Huang, Q. Yuan, X. Yang (2004). Colloids and Surfaces B: Biointerfaces 39, 31-37.
  55. Y.Ch. Chang, D.H. Chen (2005). Journal of Colloid and Interfaces Science 283, 446-451.
  56. L. Ding, Ch. Hao, Y. Xue, H. Ju (2007). Biomacromolecules 8, 1341-1346.
  57. Y. Du, X.L. Luo, J.J. Xu, H. Y. Chen (2007). Bioelectrochemistry 70, 342-347.
  58. X.L. Luo, J.J. Xu, Q. Zhang, G.J. Yang and H.Y.Chen (2005). Biosensors and Bioelectronics 21, 190-196.
  59. E. Guibal (2005). Prog. Polym. Sci. 30, 71-109.
  60. B. Geng, Z.Jin, T. Li and X. Qi (2009). Sci. Total Environ. 407, 4994-5000.
  61. P. Guo, W. Wenyan, G. Liang, P. Yao (2008). J. Colloid Interface Sci. 323, 229-234.
  62. L. A. Belfiore, M. P. Curdie and E. Ueda (1993). Macromolecules 26, 6908-6919.
  63. A. Haynes, P. M. Maitlis, R. Quyoum, C. Pulling, H. Adams, S. E. Spey, R.W. Strange (2002). J. Chem. Soc. Dalton Trans. 2565-2572.
  64. C. V. Franco, M. M. da SilvaPaula, G. Goulart, L. F. De Lima, L. K. Noda, N. S. Gonçalves (2006). Mater. Lett. 60, 2549-2553.
  65. F. Wen, W. Zhang, G. Wei, Y. Wang, J. Zhang, M. Zhang, L. Shi (2008). Chem. Mater. 20, 2144-2150.
  66. S. Klingelfer, W. Heitz, A. Greiner, S. Oestreich, S. Forster, M. Antoinietti (1997). J. Am. Chem. Soc. 119, 10116-10120.
  67. P. Zheng, X. Jiang, X. Zhang, L. Shi (2006). Langmuir 22, 9393-2396.
  68. C. Diaz, M.L. Valenzuela, G. Carriedo N. Yutronic (2014). J. Chil. Chem. Soc. 59, 2437-2441.
  69. C. Díaz, V. Lavayen, C. O’D wyer (2010). J. Solid St. Chem 183, 1595-1603.
  70. C. Díaz, M.L. Valenzuela, N. V. Lavayen, K. Mendoza, O. Peña, C. O’Dwyer (2011). Inorg. Chim. Acta. 377, 5-13.
  71. C. Díaz, M.L. Valenzuela, M. Segovia, R. De la Campa, A. Presa-Soto (2018). J. Clust. Sci. 29, 251–266.
  72. G. Yang, H. Yang, X. Zhang, K. lqbal, F. Feng, J. Ma, J. Qin, F. Yuan, Y. Cai, J. Ma (2020). Journal of Hazardous Materials 397, 122654.
  73. D. Li, G. Wu, G. Gao, J. Shen, F. Huang (2011). ACS Appl. Mater. Interfaces 3, 4573–4579.
  74. M.V. Borysenko, V.M. Bogatyrov, E.N. Poddenezhny, A.A. Boiko, A.A. Chuiko (2004). Journal of Sol-Gel Science and Technology 32, 327–331.
  75. C. Díaz, M.L. Valenzuela, M.A. Laguna-Bercero, A. Orera, D. Bobadilla, S. Abarca, O. Peña (2017). RSC Advances 7, 27729-27736.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP