JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 67 No 1 (2022): Journal of the Chilean Chemical Society
Original Research Papers

POLY(4-VINYLBENZYL) TRIMETHYLAMMONIUM CHLORIDE-CO-(4-VINYLBENZYL)-N-METHYL-D-GLUCAMINE) COPOLYMER WITH REMOVAL PROPERTIES FOR VANADIUM (V) AND MOLYBDENIUM(VI). ADSORPTION ISOTHERM STUDY

B L Rivas
Universidad de Concepcion
Published February 21, 2022
Keywords
  • Resins,
  • removal,
  • metal ions,
  • environment
How to Cite
Morales, D. V., Torregosa, M., Rivas, B. L., & Gonzalez, M. (2022). POLY(4-VINYLBENZYL) TRIMETHYLAMMONIUM CHLORIDE-CO-(4-VINYLBENZYL)-N-METHYL-D-GLUCAMINE) COPOLYMER WITH REMOVAL PROPERTIES FOR VANADIUM (V) AND MOLYBDENIUM(VI). ADSORPTION ISOTHERM STUDY. Journal of the Chilean Chemical Society, 67(1), 5408-5413. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1909

Abstract

It was studied the removal properties of poly(4-vinylbenzyl) trimethylammonium chloride–co-(4-vinylbenzyl)-N-methyl-D-glucamine) P(ClVBTA-co-VBNMDG) ion exchange resin towards vanadium (V) and molybdenum (VI), and compared with commercial  resin Amberlite  IRA-743 which contains the same functional group. The resin was characterized by FT-IR spectroscopy and SEM. Parameters like water adsorption capacity, effect of the pH, maximum retention capacity of the metal ions, elution, regeneration, selectivity, interferents effect, adsorption time, and adsorption isotherms were studied. All the studies were carried out by Batch equilibrium procedure. Thermodynamic parameters such as enthalpy, entropy, and free energy were calculated. The P(ClVBTA-co-VBNMDG) resin showed higher capacity to remove V(V) and Mo(VI) from water solution than that Amberlite IRA-743 commercial resin. The higher capacity displayed by P(VBNMDG) resin was attributed to the higher degree of swelling and the stronger active functional groups.

1909.JPG

References

1 A. K. Jain, V. K. Gupta, A. Bhatnagar and Suhas, J. Hazard. Mater., 2003, 101, 31–42.
2 E. Nagy, desalination, 2009, 240, 2–6.
3 N. Sarwar, Saifullah, S. S. Malhi, M. H. Zia, A. Naeem, S. Bibia and G. Farida, J. Sci. Food Agric., 2010, 90, 925–937.
4 N. Sarwar, W. Ishaq, G. Farid, M. Rashid, M. Imran, M. Geng and S. Hussain, Ecotoxicol. Environ. Saf., 2015, 122, 528–536.
5 D. E. Rusyniak, A. Arroyo, J. Acciani, B. Froberg, L. Kao and B. Furbee, 1 D. E. Rusyniak, A. Arroyo, J. Acciani, B. Froberg, L. Kao and B. Furbee, Mol. Clin. Environ. Toxicl, 2010, 2, 365–396.
6 B. Barkhordar and M. Ghiasseddin, Iran. J. Heal. Sci. Eng., 2004, 1, 58–64.
7 F. Fu and Q. Wang, J. Environ. Manage., 2011, 92, 407–418.
8 J. Li, Z. Zhao, C. Cao, G. Zhang and G. Huo, RMHM, 2012, 30, 180–184.
9 Z. Zhao, C. Cao, X. Chen and G. Huo, Hydrometallurgy, 2011, 108, 229–232.
10 K. Park, H. Kim and P. K. Parhi, Sep. Purif. Technol., 2010, 74, 294–299.
11 L. Zeng and C. Yong, Hydrometallurgy, 2010, 101, 141–147.
12 E. K. Alamdari, D. Darvishi, D. F. Haghshenas, N. Yousefi and S. K. Sadrnezhaad, Sep. Purif. Technol., 2012, 86, 143–148.
13 D. M. Imam, Hydrometallurgy, 2018, 180, 172–179.
14 Z. Zhu, K. Tulpatowicz, Y. Pranolo and C. Yong, Hydrometallurgy, 2015, 154, 72–77.
15 F. Pagnanelli, F. Ferella, I. De Michelis and F. Vegliò, Hydrometallurgy, 2011, 110, 67–72.
16 K. Ho, D. Mohapatra and B. R. Reddy, J. Hazard. Mater.,2006, 138, 311–316.
17 S. Y. Seo, W. S. Choi, T. J. Yang, M. J. Kim and T. Tran, Hydrometallurgy, 2012, 129–130, 145–150.
18 A. A. Basualto, Carlos, Jose Marchese, Fernando Valenzuela, Talanta, 2003, 59, 999–1007.
19 F. Valenzuela, C. Basualto and A. Acosta, 2004, 72, 309–317.
20 Y. Fu, Q. Xiao, Y. Gao, P. Ning, H. Xu and Y. Zhang, Trans. Nonferrous Met. Soc. China, 2018, 28, 1660–1669.
21 P. Orrego, J. Hernández and A. Reyes, Hydrometallurgy, 2019, 184, 116–122.
22 B. Padh, P. C. Rout, G. K. Mishra, K. R. Suresh and B. R. Reddy, Hydrometallurgy, 2019, 184, 88–94.
23 T. H. Nguyen and M. S. Lee, Hydrometallurgy, 2013 ,136, 65-70.
24 Z. Zhuo, L. I. Xiaobin and Z. Qingjie, RARE Met., 2010, 29, 115–120.
25 B. L. Rivas, H. A. Maturana and E. Pereira, Die Angew. Makromol. Chemie, 1994, 220, 61–74.
26 D. C. Crans, J. J. Smee, E. Gaidamauskas and L. Yang, Chem. Rev. 104, 849–902
27 B. Zhang, C. Tian, Y. Liu, L. Hao, Y. Liu, C. Feng, Y. Liu and Z. Wang, Bioresour. Technol., 2015, 179, 91–97.
28 R. R. Moskalyk and A. M. Alfantazi, Miner. Eng., 2003, 16, 793–805.
29 H. Peng, J. Environ. Chem. Eng., 2019, 7, 103-313.
30 J. J. Cruywagen, Adv. Inorg. Chem, 2000, 49, 127-182
31 M. Imtiaz, M. Shahid, S. Xiong, H. Li, M. Ashraf, S. Muhammad, M. Shahzad, M. Rizwan and S. Tu, Environ. Int., 2015, 80, 79–88.
32 A. S. Tracey, G. R. Willsky and E. S. Takeuchi, Vanadium: Chemistry, Biochemistry, Pharmacological, and Practical Applications, CRC Press, 1 st ed., 2007.pp 1-2
33 J. Rinklebe, V. Antoniadis, S. M. Shaheen, O. Rosche and M. Altermann, Environ. Int., 2019, 126, 76–88.
34 Urbano, B. F. Resinas Nanocompósitos y Su Potencial Aplicación En Procesos de Intercambio Iónico, Universidad de Concepción, 2012.
35 Misak, N. Z. Adsorption Isotherms in Ion Exchange Reactions. Further Treatments and Remarks on the Application of the Langmuir Isotherm. Colloids Surfaces A Physicochem. Eng. Asp. 1995, 97 (2), 129–140.
36 Alexandratos, S. D. New Polymer-Supported Ion-Complexing Agents: Design, Preparation and Metal Ion Affinities of Immobilized Ligands. J. Hazard. Mater. 2007, 139 (3), 467–470.
37 Dambies, L.; Salinaro, R.; Alexandratos, S. D. Immobilized N-Methyl-D-Glucamine as an Arsenate-Selective Resin. Environ. Sci. Technol. 2004, 38 (22), 6139–6146.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP