Vol 66 No 4 (2021): Journal of the Chilean Chemical Society
Original Research Papers


Carolina Alicia Castillo Vicencio
Universidad Autónoma de Chile
Paula Santana
Universidad Autónoma de Chile
Published December 28, 2021
  • Nanoparticles,
  • nanocomposites,
  • solvothermal synthesis,
  • superparamagnetic,
  • cobalt
How to Cite
Castillo Vicencio, C. A., & Santana , P. (2021). SUPERPARAMAGNETIC COBALT NANOCOMPOSITES SYNTHESIZED BY SOLVOTHERMAL SYNTHESIS IN A SINGLE STEP. Journal of the Chilean Chemical Society, 66(4), 5312-5315. Retrieved from


In this work we are reporting the synthesis and characterization of superparamagnetic cobalt nanocomposites obtained from the direct reduction of cobalt(II) salts on matrices of graphene (G) and carbon nanodisks/nanocones (Ndc) in the presence of L-serine under solvothermal conditions. The synthesized nanocomposites were characterized by X-ray powder diffraction techniques identifying in all cases the peaks associated to the matrix (G or Ndc) and three peaks at 2θ values of 44,2; 51,5; 75,8°, which correspond to the Miller indices (111), (200), (220), characteristic of a face centred cubic Co0 phase. The SEM images of cobalt nanocomposites show that the use of an matrix changes the size and distribution of the metallic agglomerates, being possible to observe a more homogenous dispersion of the cobalt agglomerates on the Ndc matrix surface. Cobalt nanocomposites have a superparamagnetic behaviour presenting Hc values of 14 and 60 Oe for NPs-Co0/G and NPs-Co0/Ndc respectively. The superparamagnetic property of the cobalt nanoparticles and unique properties of the matrix would generate a magnetic material with interesting properties to be studied. More research is needed to give it a potential application.



  1. H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity, J. Am. Chem. Soc., 2007, 129, 8406-8407.
  2. Q. Kuang, C.S. Lao, Z.L. Wang, Z.X. Xie, L.S. Zheng, High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire, J. Am. Chem. Soc. 2007, 129, 6070-6071.
  3. C.H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J.W. Lee, S.Y. Choi, K. Kim, J.B. Park, K. Lee, Ambient Pressure Syntheses of Size-Controlled Corundum-type In2O3 Nanocubes, J. Am. Chem. Soc., 2006, 128(29), 9326-9327.
  4. R. Oxtermann, D. Li, Y.D. Yin, J.T. McCann, Y.N. Xia, V2O5 Nanorods on TiO2 Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination, Nano Lett., 2006, 6, 1297-1302.
  5. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, J.D.H. Han, H.L. Luo, Z.J. Yang, Remanent and anisotropic switching field distribution of platelike Ba-ferrite and acicular particulate recording media, Magn. Magn. Mater. 1996, 161, 376-378.
  6. M.H. Sousa, F.A. Tourinbo, New Electric Double-Layered Magnetic Fluids Based on Copper, Nickel, and Zinc Ferrite Nanostructures, J. Phys. Chem., 2001,B, 105, 1168-1175.
  7. Kim, D., Nikles, D. E., Johnson, D. T. & Brazel, C. S. Journal of Magnetism and Magnetic Materials Heat generation of aqueously dispersed CoFe 2 O 4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. 320, 2390–2396 (2008).
  8. L. Chitu, Y. Chushkin, S. Luby, E. Majkova, A. Satka, J. Ivan, L. Smrčok , A. Buchal, M. Giersig, M. Hilgendorff, Structure and self-assembling of Co nanoparticles, Mater. Sci. Eng. C, 2007, 27, 23-28.
  9. Y. Torres, M. Anglada, L. Llanes, Fatigue mechanics of WC-Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2001, 19, 341-348.
  10. M.P. Pileni, Magnetic Fluids: Fabrication, Magnetic Properties, and Organization of Nanocrystals, Adv. Funct. Mater., 2011, 11 323-336.
  11. J.C. Yue, X.Y. Zhao, D.G. Xia, Electrochemical lithium storage of C/Co composite as an anode material for lithium ion batteries, Electrochem. Commun., 2012, 18 44-47.
  12. C. Beatrice, V. Basso, M. Lo Bue, P. Tiberto, G. Bertotti, Experimental study of the magnetization processes in nanostructured soft magnetic materials, J. Magn. Magn. Mater., 2003, 254, 158-160.
  13. L.P. Zhu, W.D. Zhang, H.M. Xiao, Y. Yang, S.Y. Fu, Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process, J. Phys. Chem., 2008, C, 112, 10073-10078.
  14. V. Paredes-Garcia, C. Cruz, J. Denardín, D. Venegas-Yazigi, C. Castillo, E. Spodine and Z. Luo, Effect of the Different Synthetic Parameters on the Morphology and Magnetic Properties of Nickel Nanoparticles, New J. Chem., 2014, 38, 837-844.
  15. N. Matoussevitch, A. Gorschinski, W. Habicht, J. Bolle, E. Dinjus, H. Bonnemann, Surface modification of metallic Co nanoparticles, J. Magn. Magn. Mater., 2007, 311, 92-96.
  16. W. Liu, W. Zhong, X. Wu, N. Tang, Y. Du, Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures, J. Cryst. Growth., 2005, 284, 446-452.
  17. Y. Su, X. Ouyang, J. Tang, Spectra study and size control of cobalt nanoparticles passivated with oleic acid and triphenylphosphine, Appl. Surf. Sci., 2010, 256, 2353-2356.
  18. C. Castillo, K. Seguin, P. Aguirre, D. Venegas-Yazigi, A. D. C. Viegas, E. Spodine, V. Paredes-Garcia, Nickel Nanocomposites. Magnetic and Catalytic Properties, RSC Adv. 2015, 5, 63073-63079.
  19. M. C, L. Bin, S. Huai-he, Z. Lin-jie, Preparation of carbon-encapsulated metal magnetic nanoparticles by an instant pyrolysis method, New Carbon Mater., 2010, 25 3 199-204.
  20. Z. Abdullaeva, E. Omurzak, C. Iwamoto, H. Subban, S. Sulaimankulova, C. Liliang, T. Mashimo, Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid, Carbon50(5), 2012, 1776-1785.
  21. J. Carlsson, M. Scheffler, Structural, Electronic, and Chemical Properties of Nanoporous Carbon, Phys. Rev. Lett., 2006, 96, 46806-46810.
  22. D. Boukhvalov, M. Katsnelson. Chemical Functionalization of Graphene with Defects, Nano Lett., 2008, 8(12), 4373-4379.
  23. H. Wang, J. Robinson, G. Diankov, H. Dai, Nanocrystal Growth on Graphene with Various Degrees of Oxidation, J. Am. Chem. Soc., 2010, 132(10), 3270-3271.
  24. P. Simon, Y. Gegotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7, 320-329.
  25. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature, 1997, 388(6641), 451-454.
  26. G. Helgesen, K.D. Knudsen, J.P. Pinheiro, A.T. Skjeltorp, E. Svaasand, H. Heiberg-Andersen, A. Elgsaeter, T. Garberg, S.N. Naess, S. Raaen, M.F. Tverdal, X. Yu, T.B. Meloe. Carbon Cones - a Structure with Unique Properties, Mater. Res. Soc. Symp. Proc. 2008, 1057.
  27. M. Yudasaka, S. Iijima, V.H. Crespi, Single-Wall Carbon Nanohorns and Nanocones,Top. Appl. Phys., 2008, 111, 605-629.
  28. J. M. Jimenez-Soto, S. Cardenas, M. Valcárcel, Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction, J Chromatogr. A., 2009, 1216, 5626-5633.
  29. M. Alagiri, C. Muthamizhchelvan, S. Hamid, Synthesis of superparamagnetic cobalt nanoparticles through solvothermal process, J. Mater. Sci. Mater. Electron., 2013, 24(11), 4157-4160.
  30. M.Li, K. Xie, Y. Wu, Q. Yang and L. Liao, Synthesis of cobalt nanowires by template-free method, Mater. Lett., 2013. 111, 185-187.
  31. X. Du, H. Liu, C. Zhou, S. Moody, Y. Mai, On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them, Carbon 50, 2012, 50, 2347-2374.
  32. P. Santana, C. Castillo, S. Michea, D. Venegas-Yazigi, V. Paredes-Garcia, Co0 superparamagnetic nanoparticles stabilized by an organic layer coating with antimicrobial activity, RSC Adv., 2020, 10(57), 34712-34718.
  33. D.Yan, H. Zhao, Y. Liu, X. Wu, J. Pei, Shape-controlled synthesis of Cobalt particles by a surfactant-free solvothermal method and their catalytic application on the thermal decomposition of ammonium perchlorate Dong, Cryst Eng Comm, 2015, 17(47), 9062-9069.
  34. Y. Yao, C.Xu, J. Qin, F. Wei, M. Rao and S. Wang, Synthesis of Magnetic Cobalt Nanoparticles Anchored on Graphene Nanosheets and Catalytic Decomposition of Orange II, Ind. Eng Chem Res, (2013), 52, 17341−17350.
  35. G. Zhu, X. Wei, C. Xia, C and Y. Ye, Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells, Carbon 45, (2007), 45, 1160–1166.
  36. A. Farghaly, Z. Huba and E. Carpenter, Magnetic field assisted polyol synthesis of cobalt carbide and cobalt microwires, J Nanoprta Res, (2012), 14, 1159-1163.
  37. A. Kolhatkar, A. Jamison, D. Litvinov, R. Willson, T. Lee, Tuning the Magnetic Properties of Nanoparticles, Int J Mol Sci, (2013), 14, 15877-16009.
  38. E. Vargas, P. Toro, J. Palma, J. Escrig, C. Chanéac, T. Coradin, J. Denardin, Facile synthesis and magnetic characterizations of single-crystalline hexagonal cobalt nanoplates, Mater Lett 94, (2013), 121–123

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP