JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 66 No 4 (2021): Journal of the Chilean Chemical Society
Original Research Papers

BRIEF STUDY ON THE DECOMPOSITION OF TEGDME SOLVENT IN THE PRESENCE OF LI2O2 AND H2O2

Paulina Márquez
Departamento de Física, Universidad de Santiago de Chile, Av. B. O’Higgins 3363, Estación Central, Santiago, Chile.
Mauricio Moncada-Basualto
Laboratory of Free Radicals and Antioxidants. Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile.
Caudio Olea-Azar
Laboratory of Free Radicals and Antioxidants. Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile.
Francisco Herrera
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins 3363, Estación Central, Santiago, Chile.
Macarena García
Laboratorio de Procesos Fotónicos y Electroquímicos, Departamento Disciplinario de Química, Universidad de Playa Ancha, Valparaíso, Chile.
María Jesús Aguirre
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins 3363, Estación Central, Santiago, Chile.
Published December 28, 2021
Keywords
  • carbon-centered radicals,
  • Li-O2 cell,
  • oxygen-centered radicals,
  • peroxide of hydrogen,
  • peroxide of lithium,
  • tetraethylene glycol dimethyl ether decomposition
  • ...More
    Less
How to Cite
Márquez, P., Moncada-Basualto, M., Olea-Azar, C., Herrera, F., García, M., & Aguirre, M. J. (2021). BRIEF STUDY ON THE DECOMPOSITION OF TEGDME SOLVENT IN THE PRESENCE OF LI2O2 AND H2O2. Journal of the Chilean Chemical Society, 66(4), 5316-5319. Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/1847

Abstract

In this work we studied the decomposition of the TEGDME (tetraethylene glycol dimethyl ether) solvent in conditions simulating the charge of a Li-O2 cell in the presence and absence of peroxide of hydrogen and peroxide of lithium trough ESR studies.  We detected the formation of radical species, although in low concentrations, originating from solvent decomposition reactions during the oxidation process, in the absence of peroxides. On the other hand, when introducing H2O2 and H2O into the system, oxygen-centered radical species superoxide and hydroxyl were detected. In addition, in the presence of Li-O2, carbon-centered radical species were detected that clearly show the decomposition of the solvent.  Finally, the results show that it is very important that the charging process of a Li-O2 cell is carried out through direct oxidation via 2 e- to Li2O2 to avoid formation of radical species that cause deterioration of the solvent.

1847.JPG

References

  1. X.H. Yao, Q. Dong, Q.M. Cheng, D.W. Wang, Angew. Chem. Int. Ed. 55, 11344-11353, (2016).
  2. M. Balaish, A. Kraytsberg, Y. Ein-Eli, PCCP, 16, 2801 (2014).
  3. P. Du, J. Lu, K.C. Lau, X.Y. Luo, J. Bareno, X.Y. Zhang, Y. Ren, Z.C. Zhang, L.A. Curtiss, Y.K. Sun, K. Amine, PCCP, 15 , 5572 (2013).
  4. E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, S.D. Burton, L. Cosimbescu, M.E. Gross, J.-G. Zhang, J. Phys. Chem. C. 117, 2635 (2013).
  5. M.M.O. Thotiyl, S.A. Freunberger, Z.Q. Peng, P.G. Bruce, J. Am. Chem. Soc. 135, 494 (2013).
  6. B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshoj, J.K. Norskov, A.C. Luntz, J. Phys. Chem. Lett. 3, 997 (2012).
  7. J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster, J. Electrochem. Soc. 150, A1351 (2003).
  8. W. Xu, K. Xu, V.V. Viswanathan, S.A. Towne, J.S. Hardy, J. Xiao, D.H. Hu, D.Y. Wang, J.G. Zhang, J. Power Sources, 196, 9631, (2011)
  9. S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, J. Am. Chem. Soc., 133, 8040 (2011).
  10. J. Read, J. Electrochem. Soc., 153, A96 (2006).
  11. R. Younesi, M. Hahlin, M. Treskow, J. Scheers, P. Johansson, K. Edstrom, J. Phys. Chem. C, 116, 18597 (2012).
  12. W. Xu, J.Z. Hu, M.H. Engelhard, S.A. Towne, J.S. Hardy, J. Xiao, J. Feng, M.Y. Hu, J. Zhang, F. Ding, M.E. Gross, J.G. Zhang, J. Power Sources , 215, 240 (2012).
  13. H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, B. Scrosati, Nat. Chem., 4 , 579 (2012).
  14. Z. Ma, X.X. Yuan, L. Li, Z.F. Ma, D.P. Wilkinson, L. Zhang, J.J. Zhang, Energy Environ. Sci. 8, 2144 (2015).
  15. C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, J. Phys. Chem. C, 114, 9178 (2010).
  16. S. Ferrari, E. Quartarone, C. Tomasi, M. Bini, P. Galinetto, M. Fagnoni, P. Mustarelli, J. Electrochem. Soc. 162, A3001 (2015).
  17. C.O. Laoire, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Electrochem. Soc. 158, A302 (2011).
  18. B.D. McCloskey, C.M. Burke, J.E. Nichols, S.E. Renfrew, Chem. Commun. 51, 12701 (2015).
  19. F.S. Gittleson, R.C. Sekol, G. Doubek, M. Linardi, A.D. Taylor, PCCP, 16, 3230 (2014).
  20. L. Wang, Y. Zhang, Z. Liu, L. Guo, Z. Peng, GEE, 2, 186 (2017).
  21. M.J. Trahan, I. Gunasekara, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, J. Electrochem. Soc.161, A1706 (2014).
  22. A. Khetan, H. Pitsch, V. Viswanathan, J. Phys. Chem. Lett. 5, 2419 (2014).
  23. T. Zhang, R. Amine, X. Bi, Y. Qin, M. Li, S. Al-Hallaj, F. Huo, J. Lu, K. Amine, J. Mater. Chem. A, 7 ,15615 (2019).
  24. S.Y. Kang, Y.F. Mo, S.P. Ong, G. Ceder, Chem. Mater. 25, 3328 (2013).
  25. B. Aguilera-Venegas, C. Olea-Azar, V.J. Aran, H. Speisky, Future Med. Chem. 5, 1843 (2013).
  26. M. Carboni, A.G. Marrani, R. Spezia, S. Brutti, J. Electrochem. Soc. 165, A118 (2018).
  27. N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm, A. Leitgeb, Gernot A. Strohmeier, M. Wilkening, O. Fontaine, D. Kramer, C. Slugovc, Sergey M. Borisov, Stefan A. Freunberger, Nat. Energy, 2, 17036 (2017).
  28. J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.A. Eichel, Angew. Chem. Int. Ed. 55, 6892 (2016).
  29. M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Adv. Energy Mater. 2, 780 (2012).
  30. S.A. Freunberger, Y.H. Chen, N.E. Drewett, L.J. Hardwick, F. Barde, P.G. Bruce, Angew. Chem. Int. Ed. 50, 8609 (2011).
  31. M.M.O. Thotiyl, S.A. Freunberger, Z.Q. Peng, Y.H. Chen, Z. Liu, P.G. Bruce, Nat. Mater. 12, 1049 (2013).
  32. T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, P.G. Bruce, J. Am. Chem. Soc. 128,1390 (2006).
  33. Z. Peng, S.A. Freunberger, L.J. Hardwick, Y. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J.-M. Tarascon, P.G. Bruce, Angew. Chem. Int. Ed. 50, 6351 (2011).
  34. Y.-C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 4, 93 (2013).
  35. B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J.G. Zhou, C.V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 6, 2518 (2013).
  36. J. Yang, D. Zhai, H.-H. Wang, K.C. Lau, J.A. Schlueter, P. Du, D.J. Myers, Y.-K. Sun, L.A. Curtiss, K. Amine, PCCP, 15, 3764 (2013).
  37. Y. Wang, N.-C. Lai, Y.-R. Lu, Y. Zhou, C.-L. Dong, Y.-C. Lu, Joule, 2, 2364 (2018).
  38. S. Ganapathy, B.D. Adams, G. Stenou, M.S. Anastasaki, K. Goubitz, X.-F. Miao, L.F. Nazar, M. Wagemaker, J. Am. Chem. Soc. 136, 16335 (2014).
  39. V. Gutmann, Coord. Chem. Rev. 18, 225 (1976).
  40. Z. Guo, X. Dong, S. Yuan, Y. Wang, Y. Xia, J. Power Sources, 264, 1 (2014).
  41. K.U. Schwenke, M. Metzger, T. Restle, M. Piana, H.A. Gasteiger, J. Electrochem. Soc. 162, A573 (2015).
  42. Y.G. Zhu, Q. Liu, Y. Rong, H. Chen, J. Yang, C. Jia, L.-J. Yu, A. Karton, Y. Ren, X. Xu, S. Adams, Q. Wang, Nat. Commun., 8, 14308 (2017).
  43. X.W. Gao, Y.H. Chen, L. Johnson, P.G. Bruce, Nat. Mater. 15, 882 (2016).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP