CHEMICAL AND MICROSTRUCTURAL CHANGES IN EUCALYPTUS GLOBULUS FIBERS SUBJECTED TO FOUR DIFFERENT PRETREATMENTS AND THEIR INFLUENCE ON THE ENZYMATIC HYDROLYSIS
- Enzymatic hydrolysis,
- Lignin micro-droplets,
- Organosolv,
- Kraft process,
- Steam explosión
- Autohydrolysis,
- Eucalyptus globulus ...More
Copyright (c) 2017 Eduardo Troncoso, Rosario Castillo, Roberto Valenzuela, Pablo Reyes, Juanita Freer, Marcela Norambuena, Jaime Rodríguez, Carolina Parra
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
In order to understand the relation between chemical composition, microscopic structure and enzymatic digestibility, different Eucalyptus globulus Wood pretreated samples were examined. Pretreated materials obtained by steam explosion and autohydrolysis were compared with those obtained by organosolv and kraft processes. Chemical analyses of pretreated materials showed a decrease in the content of xylans, except in the kraft pulp. FT-IR spectra showed that the residual lignin in autohydrolysis pulp had experienced greater changes compared to those in steam explosion and organosolv pulps, whereas minor changes in lignin kraft pulp were observed. The fiber morphology indicated that autohydrolysis pretreatment was the most aggressive treatment. Reduction in the content of lignin and its redistribution on the fiber wall were confirmed through confocal laser microscopy. The formation of discrete lignin droplets deposited on the surface of the fibers was observed in all pretreatments, with a higher frequency in organosolv followed by steam explosion. A significant increase in enzymatic accessibility was achieved in organosolv, autohydrolysis and steam explosion pulps, due to xylans removal combined with lignin redistribution. Homogeneous lignin distribution and higher xylan content may be related to the low enzymatic hydrolysis efficiency in kraft pulp.
References
- H. Palonen, F. Tjerneld, G. Zacchi, M. Tenkanen, J Biotechnol 107, 65- 72, (2004).
- A. Várnai, L. Viikari, K. Marjamaa, M. Siika-aho, Bioresource Technol 102, 1220-1227, (2011).
- G. Siqueira, A. M. F. Milagres, W. Carvalho, G. Koch, A. Ferraz, Biotechnol Biofuels 4, 7, (2011).
- B. S. Donohoe, S. R. Decker, M. P. Tucker, M. E. Himmel, T. B. Vinzant, Biotechnol Bioeng 101, 913-925, (2008).
- A. Várnai, M. Siika-aho, L. Viikari, Enzyme Microb. Technol 46, 185-193, (2010).
- J. B. Kristensen, L. G. Thygesen, C. Felby, H. Jorgensen, T. Elder, Biotechnol Biofuels 1, 5, (2008).
- M. J. Selig, S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, T. B. Vinzant, Biotechnol Progr 23, 1333-1339, (2007).
- H. J. Li, Y. Q. Pu, R. Kumar, A. J. Ragauskas, C. E. Wyman, Biotechnol Bioeng 111, 485-492, (2014).
- M. J. Taherzadeh, K. Karimi, Int J Mol Sci 9, 1621-1651, (2008).
- P. Sassner, C-G. Mårtensson, M. Galbe, G. Zacchi, Bioresource Technol 99, 137-145, (2008).
- H. Li, A. Saeed, M. Sarwar Jahan, N. Yonghao, A. van Heiningen, J. Wood Chem Technol 30, 48-60, (2010).
- L.P. Ramos, Quim Nova 26, 863-871, (2003).
- M. Monrroy, J. R. Garcia, R. Mendonça, J. Baeza, J. Freer, J Chil Chem Soc 58, 827-831, (2012).
- A. Mimms, M. Kocurek, J. A. Pyatte, E. E. Wright, Tappi Press. Atlanta, (1993).
- H. Sixta, Pulp properties and applications. Handbook of pulp: 1009-1067, (2006).
- M. Yañez-S, J. Rojas, J. Castro, A. Ragauskas, J. Baeza, J. Freer. J Chem Technol Biotechnol 88, 39-48, (2013).
- R. Castillo, J. Baeza, J. Rubilar, A. Rivera, J. Freer, Appl Biochem Biotechnol 168, 2028-2042 (2012).
- M. J. de la Torre, A. Moral, M. D. Hernández, E. Cabeza, A. Tijero, Ind. Crops Prod 45, 58-63, (2013).
- F. Hu, S. Jung, A. Ragauskas, Bioresource Technol 117, 7-12, (2012).
- L-P. Xiao, Z-J. Sun, Z-J. Shi, F. Xu, R-C. Sun, BioResources 6, 1576-98, (2011).
- Y. Q. Pu, F. Hu, F. Huang, B. H. Davison, A. J. Ragauskas, Biotechnol Biofuels 6, 15, (2013).
- F. Araya, E. Troncoso, R. T. Mendonça, J. Freer, Biotechnol Bioeng 112, 1783-1791, (2015).
- J-P. Elissetche, A. Ferraz, J. Freer, R. Mendonça, J. Rodriguez, FEMS Microbiol Lett 260, 112-118, (2006).
- O. Faix, Holzforschung 45, 21-27, (1991).
- Y. Chen, J. M. Gao, Y. M. Fan, M. A. Tshabalala, N. M. Stark, BioResources 7, 2236-2248, (2012).
- C. M. Popescu, M. C. Popescu, G. Singurel, C. Vasile, D. S. Argyropoulos, S. Willfor, Appl Spectrosc 61, 1168-1177, (2007).
- D. Fengel and G. Wegener, Wood-chemistry, ultrastructure, reactions. Walter de Gruyter, (1984).
- G. Uçar, D. Meier, O. Faix, G. Wegener, HolzRohWerkst 63, 57-63 (2005).
- E. W. Rutkowska, P. Wollboldt, G. Zuckerstatter, H. K. Weber, H. Sixta, BioResources 4, 172-193, (2009).
- M. Schwanninger, J. C. Rodrigues, H. Pereira, B. Hinterstoisser, Vib Spectrosc 36, 23-40, (2004).
- K. Wang, J. X. Jiang, F. Xu, R. C. Sun, Polym Degrad and Stabil. 94, 1379-1388, (2009).
- P. Hutzler, R. Fischbach, W. Heller, T. P. Jungblut, S. Reuber, R. Schmitz, M. Veit, G. Weissenböck, J-P. Schmitzler, J Exp Bot 49, 953-965, (1998).
- F. Xu, R. C. Sun, Q. Lu, G. L. Jones, G.L. Wood Sci. Technol 40, 358-370 (2006).
- R. Castillo, J. Araya, E. Troncoso, S. Vinet, J. Freer, Analyt Chim Acta 866, 10-20, (2015).
- F. Araya, E. Troncoso, R. T. Mendonça, J. Freer, J. Rencoret, J.C. del Río, J Chil Chem Soc 60, 2954-2960, (2015).