Vol 66 No 2 (2021): Journal of the Chilean Chemical Society


Camilo Céspedes
Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco
Published June 13, 2021
  • Datura,
  • Phytochemical,
  • Solanaceae,
  • Pharmacological potential,
  • Metabolites
How to Cite
Céspedes, C. (2021). SECONDARY METABOLITES AND BIOLOGICAL PROFILES OF DATURA GENUS. Journal of the Chilean Chemical Society, 66(2), 5183-5189. Retrieved from


Solanaceae is an important family of plants where many species of this family are source for food, industrial products, ornamental and medicinal uses. Within the family of Solanaceae, the genus Datura is one of the most interesting, in principle for its known medicinal and psychotropic uses against different pathologies. Multiple biological activities of Datura species have been documented. The species of the genus are attributed with insecticide, fungicide, antioxidant, antimicrobial, hypoglycemic, and immune response enhancing activity against cancer cells. These activities are related to the presence of different secondary metabolites such us: terpenoids, flavonoids, withanolides, tannins, phenolic compounds and tropane alkaloids, the main secondary metabolite of the genus Datura, being the most abundant atropine and scopolamine. The propose of this review is to identify the main phytochemical compounds isolated from the genus Datura and describe their biological activities associated to different secondary metabolites.




  1. Olmstead, R. G., Bohs, L., Migid, H. A., Santiago-Valentin, E., Garcia, V. F., & Collier, S. M. (2008). A molecular phylogeny of the Solanaceae. Taxon, 57(4), 1159-1181.
  2. De Jesus Matias, L., Rocha, J. A., de Andrade Royo, V., Menezes, E. V., de Melo Júnior, A. F., & de Oliveira, D. A. (2019). Phytochemistry in medicinal species of Solanum L. (Solanaceae). Pharmacognosy Research, 11(1), 47.
  3. Dupin, J., Matzke, N. J., Särkinen, T., Knapp, S., Olmstead, R. G., Bohs, L., & Smith, S. D. (2017). Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography, 44(4), 887-899.
  4. Chowański, S., Adamski, Z., Marciniak, P., Rosiński, G., Büyükgüzel, E., Büyükgüzel, K. & Bufo, S. A. (2016). A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins, 8(3), 60.
  5. Ibrahim, M., Siddique, S., Rehman, K., Husnain, M., Hussain, A., Akash, M. S. H., & Azam, F. (2018). Comprehensive analysis of phytochemical constituents and ethnopharmacological investigation of genus Datura. Critical Reviews™ in Eukaryotic Gene Expression, 28(3).
  6. Palazón, J., Moyano, E., Bonfill, M., Cusidó, R. M., Piñol, M. T., & da Silva, J. T. (2006). Tropane alkaloids in plants and genetic engineering of their biosynthesis. Floriculture, Ornamental and Plant Biotechnology, II, 209-221.
  7. Nayyar, M. S., Hanif, M. A., Mjaeed, M. I., Ayub, M. A., & Rehman, R. (2020). Datura. In Medicinal Plants of South Asia (pp. 207-216). Elsevier.
  8. Benítez, G., March-Salas, M., Villa-Kamel, A., Cháves-Jiménez, U., Hernández, J., Montes-Osuna, N., & Cariñanos, P. (2018). The genus Datura L. (Solanaceae) in Mexico and Spain–Ethnobotanical perspective at the interface of medical and illicit uses. Journal of ethnopharmacology, 219, 133-151.
  9. King, A., Powis, T. G., Cheong, K. F., Deere, B., Pickering, R. B., Singleton, E., & Gaikwad, N. W. (2018). Absorbed residue evidence for prehistoric Datura use in the American Southeast and Western Mexico. Advances in Archaeological Practice, 6(4), 312-327.
  10. Valenzuela, E. (2011). Three notes on the use of medicinal plants in curative and bewitchment rituals (Chile S.xviii). Intus-Legere Historia, 5(2), 89-105.
  11. Al-Snafi, A. E. (2017). Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium-A review. IOSR Journal of Pharmacy, 7(2), 43-58.
  12. Carpa, R., Dumitru, D. V., Burtescu, R. F., Maior, M. C., Dobrotă, C., & Olah, N. K. (2017). Bio-chemical analysis of Datura stramonium extract. Studia Universitatis Babes-Bolyai, Biologia, 62(2).
  13. Anju, D., & Ratan, L. (2011). Phytochemical and pharmacological status of Datura fastuosa Linn. Int J Res Ayurveda Pharm, 2(1), 145-150.
  14. Bandhoria, P., Gupta, V. K., Sharma, V. K., Satti, N. K., Dutt, P., & Suri, K. A. (2006). Crystal Structure of 6α, 7α: 24α, 25α-Diepoxy-5α, 12α-dihydroxy-1-oxo-20S, 22R-witha-2-enolide isolated from Datura quercifolia Leaves. Analytical Sciences: X-ray Structure Analysis Online, 22, x169-x170.
  15. Ali, M., Nishad, U., & Yadav, V. K. (2020). Evaluation of phytochemical & antibacterial activity on some Indian medicinal plants (Kateli, Datura, Makoi). Journal of Pharmacognosy and Phytochemistry, 9(2), 51-60.
  16. Chamani, E., Rezaei, Z., Dastjerdi, K., Javanshir, S., Khorsandi, K., & Mohammadi, G. A. (2019). Evaluation of some genes and proteins involved in Apoptosis on human chronic myeloid leukemia cells (K562 cells) by Datura innoxia Leaves Aqueous Extract. Journal of Biomolecular Structure and Dynamics, 1-12.
  17. Bakht, J., Qureshi, M., Iqbal, A., & Shafi, M. (2019). Effect of different solvent extracted samples from the leaves and fruits of Datura stramonium on the growth of bacteria and fungi. Pakistan journal of pharmaceutical sciences, 32(1).
  18. Iqbal, S., Sivaraj, C., & Gunasekaran, K. (2017). antioxidant and anticancer activities of methanol extract of seeds of Datura stramonium l. Free Radicals & Antioxidants, 7(2).
  19. Khan, W., Subhan, S., Shams, D. F., Afridi, S. G., Ullah, R., Shahat, A. A., & Alqahtani, A. S. (2019). Antioxidant potential, phytochemicals composition, and metal contents of Datura alba. BioMed research international, 2019.
  20. Mai, N. T., Cuc, N. T., Anh, H. L. T., Nhiem, N. X., Tai, B. H., Yen, P. H., & Oh, H. (2017). Two new guaiane sesquiterpenes from Datura metel L. with anti-inflammatory activity. Phytochemistry Letters, 19, 231-236.
  21. Javid, M., Aziz, A., Azhar, M. F., & Qayyum, A. (2017). Antioxidant, Antibacterial, Phytochemical Composition of Leaves and Roots Extracts of Datura alba. Zeitschrift Fur Arznei-& Gewurzpflanzen, 22(4), 165-168.
  22. Luna-Cavazos, M., Bye, R., & Jiao, M. (2009). The origin of Datura metel (Solanaceae): genetic and phylogenetic evidence. Genetic resources and crop evolution, 56(2), 263.
  23. Setshogo, M. P. (2015). A review of some medicinal and or hallucinogenic Solanaceous plants of Botswana: the genus Datura L. Int. J. Appl. Res. Nat. Prod, 1, 15-23.
  24. Bye, R., Mata, R., & Pimentel, J. (1991). Botany, ethnobotany, and chemistry of Datura lanosa (Solanaceae) in Mexico. Anales del Instituto de Biología. Serie Botánica, 61(1), 21-42.
  25. Martínez, M., Vargas-Ponce, O., Rodríguez, A., Chiang, F., & Ocegueda, S. (2017). Solanceae family in Mexico. Botanical Sciences, 95(1), 131-145.
  26. Haegi, L. (1976). Taxonomic account of Datura L. (Solanaceae) in Australia with a note on Brugmansia Pers. Australian Journal of Botany, 24(3), 415-435.
  27. Rabei, S., Khedr, A., & El Gamal, I. (2019). Clinopodium serpyllifolium subsp. barbatum (Lamiaceae) and Datura ferox (Solanaceae): New Records For The Flora of Egypt. Egyptian Journal of Botany, 59(1), 233-239.
  28. Castillo, G., Calahorra‐Oliart, A., Núñez‐Farfán, J., Valverde, P. L., Arroyo, J., Cruz, L. L., & Tapia‐López, R. (2019). Selection on tropane alkaloids in native and non‐native populations of Datura stramonium. Ecology and Evolution, 9(18), 10176-10184.
  29. Dupraz, J. M., Christen, P., & Kapetanidis, I. (1994). Tropane alkaloids in transformed roots of Datura quercifolia. Planta medica, 60(2), 158-162.
  30. Anulika, N. P., Ignatius, E. O., Raymond, E. S., Osasere, O., & Hilda, A. (2016). The chemistry of natural product. Plant Secondary Metabolites, 4(August), 0–8.
  31. Tan, J., Liu, Y., Cheng, Y., Sun, Y., Pan, J., Guan, W., & Kuang, H. (2020). New withanolides with anti-inflammatory activity from the leaves of Datura metel L. Bioorganic Chemistry, 95, 103541.
  32. Liu, Y., Guan, W., Yang, C. L., Luo, Y. M., Liu, Y., Zhou, Y. Y.,& Kuang, H. X. (2020). Steroids with potential anti-inflammatory activity from the roots of Datura metel L. Canadian Journal of Chemistry, 98(2), 74-78.
  33. Kumral, N. A., Çobanoğlu, S., & Yalcin, C. (2010). Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychus urticae (Koch). Journal of Pest Science, 83(2), 173-180.
  34. Kuganathan, N., & Ganeshalingam, S. (2011). Chemical analysis of Datura metel leaves and investigation of the acute toxicity on grasshoppers and red ants. Journal of Chemistry, 8(1), 107-112.
  35. Jain, M., Muthukumaran, J., & Singh, A. K. (2020). Structural and functional characterization of chitin binding lectin from Datura stramonium: insights from phylogenetic analysis, protein structure prediction, molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1-19.
  36. Carlini, C. R., & Grossi-de-Sá, M. F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 40(11), 1515-1539.
  37. Kilpatrick, D. C., & Yeoman, M. M. (1978). Purification of the lectin from Datura stramonium. Biochemical Journal, 175(3), 1151-1153.
  38. Gupta, A. K., Ahirwar, N. K., Shinde, N., Choudhary, M., Rajput, Y. S., & Singh, A. (2013). Phytochemical screening and antimicrobial assessment of leaves of Adhatoda vasica, Azadirachta indica and Datura stramonium. UK Journal of Pharmaceutical and Biosciences, 1(1), 42-47.
  39. Hossain, M. A., Al Kalbani, M. S. A., Al Farsi, S. A. J., Weli, A. M., & Al-Riyami, Q. (2014). Comparative study of total phenolics, flavonoids contents and evaluation of antioxidant and antimicrobial activities of different polarities fruits crude extracts of Datura metel L. Asian Pacific Journal of Tropical Disease, 4(5), 378-383.
  40. Jasso, C., Nieto-Camacho, A., Ramírez-Apan, M., Martínez, M., & Maldonado, E. (2020). Antioxidant, cytotoxic, and acetylcholinesterase inhibitory activities of withanolides from Datura quercifolia. Planta Medica International Open, 7(02), e68-e72.
  41. Li, T., Wei, Z., Sun, Y., Wang, Q., & Kuang, H. (2019). Withanolides, Extracted from Datura Metel L. Inhibit Keratinocyte Proliferation and Imiquimod-Induced Psoriasis-Like Dermatitis via the STAT3/P38/ERK1/2 Pathway. Molecules, 24(14), 2596.
  42. Kagale, S., Marimuthu, T., Thayumanavan, B., Nandakumar, R., & Samiyappan, R. (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology, 65(2), 91-100.
  43. Aboluwodi, A. S., Avoseh, N. O., Lawal, A. O., Ogunwande, I. A., & Giwa, A. A. (2017). Chemical constituents and antiinflammatory activity of essential oils of Datura stramonium L. J. Med. Plant Stud, 5(1), 21-25.
  44. Hare, J. D., & Sun, J. J. (2011). Production of induced volatiles by Datura wrightii in response to damage by insects: effect of herbivore species and time. Journal of chemical ecology, 37(7), 751-764.
  45. Hare, J. D. (2007). Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii. Journal of chemical ecology, 33(11), 2028-2043.
  46. Yang, B. Y., Zhou, Y. Q., Liu, Y., Lu, Z. K., & Kuang, H. X. (2018). Ent-kaurane diterpenoids from the pericarps of Datura metel L. acted on the vascular endothelial cells via TRPC6 and NF-κB protein. Medicinal Chemistry Research, 27(1), 115-121.
  47. Benabderrahim, M. A., Sarikurkcu, C., Elfalleh, W., & Ozer, M. S. (2019). Datura innoxia and Dipsacus laciniatus: Biological activity and phenolic composition. Biocatalysis and Agricultural Biotechnology, 19, 101163.
  48. Pan, Y., Wang, X., & Hu, X. (2007). Cytotoxic withanolides from the flowers of Datura metel. Journal of natural products, 70(7), 1127-1132.
  49. Veleiro, A. S., Cirigliano, A. M., Oberti, J. C., & Burton, G. (1999). 7-Hydroxywithanolides from Datura ferox. Journal of natural products, 62(7), 1010-1012.
  50. Crowley, J. F., & Goldstein, I. J. (1981). Datura stramonium lectin: isolation and characterization of the homogeneous lectin. FEBS Letters, 130(1), 149-152.
  51. Friedman, M., & Levin, C. E. (1989). Composition of jimson weed (Datura stramonium) seeds. Journal of agricultural and food chemistry, 37(4), 998-1005.
  52. Crowley, J. F., Goldstein, I. J., Arnarp, J., & Lönngren, J. (1984). Carbohydrate binding studies on the lectin from Datura stramonium seeds. Archives of biochemistry and biophysics, 231(2), 524-533.
  53. Desai, N. N., Allen, A. K., & Neuberger, A. (1981). Some properties of the lectin from Datura stramonium (thorn-apple) and the nature of its glycoprotein linkages. Biochemical Journal, 197(2), 345-353.
  54. Ali, A., Ahmad, F., Biondi, A., Wang, Y., & Desneux, N. (2012). Potential for using Datura alba leaf extracts against two major stored grain pests, the khapra beetle Trogoderma granarium and the rice weevil Sitophillus oryzae. Journal of Pest Science, 85(3), 359-366.
  55. Monira, K. M., & Munan, S. M. (2012). Review on Datura metel: A potential medicinal plant. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 1(4), 123.
  56. Miraldi, E., Masti, A., Ferri, S., & Comparini, I. B. (2001). Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia, 72(6), 644-648.
  57. Welegergs, G. G., Hulif, K., Mulaw, S., Gebretsadik, H., Tekluu, B., & Temesgen, A. (2015). Isolation, structural elucidation and bioactivity studies of tropane derivatives of alkaloids from seeds extract of Datura stramonium. Science Journal of Chemistry, 3(5), 78-83.
  58. El Bazaoui, A., Bellimam, M. A., & Soulaymani, A. (2011). Nine new tropane alkaloids from Datura stramonium L. identified by GC/MS. Fitoterapia, 82(2), 193-197.
  59. De Simone, R., Margarucci, L., & De Feo, V. (2008). Tropane alkaloids: an overview. Pharmacologyonline, 1, 70-89.
  60. Berkov, S. (2003). Alkaloids of Datura ceratocaula. Zeitschrift für Naturforschung C, 58(7-8), 455-458.
  61. Kovatsis, A., Flaskos, J., Nikolaidis, E., Kotsaki-Kovatsi, V. P., Papaioannou, N., & Tsafaris, F. (1993). Toxicity study of the main alkaloids of Datura ferox in broilers. Food and chemical toxicology, 31(11), 841-845.
  62. Padula, L. Z., Bandoni, A. L., Rondina, R. V. D., & Coussio, J. D. (1976). Quantitative determination of total alkaloids and scopolamine in Datura ferox growing in Argentina. Planta medica, 29(04), 357-360.
  63. Evans, W. C., & Stevenson, N. A. (1962). Studies on Datura leichhardtii muell. Ex benth. Part II. Alkaloidal Constituents. Journal of Pharmacy and Pharmacology, 14(S1), 107T-110T.
  64. Berkov, S., Zayed, R., & Doncheva, T. (2006). Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia, 77(3), 179-182.
  65. Okwu, D. E., & Igara, E. C. (2009). Isolation, characterization and antibacterial activity of alkaloid from Datura metel Linn leaves. African Journal of Pharmacy and Pharmacology, 3(5), 277-281.
  66. Khan, A. A., Afzal, M., Raza, A. M., Khan, A. M., Iqbal, J., Tahir, H. M., & Aqeel, M. A. (2013). Toxicity of botanicals and selective insecticides to Asian citrus psylla, Diaphorina citri K. (Homoptera: Psyllidae) in laboratory conditions. Jokull Journal, 63, 52-72.
  67. Abbasipour, H., Mahmoudvand, M., Rastegar, F., & Hosseinpour, M. H. (2011). Bioactivities of jimsonweed extract, Datura stramonium L. (Solanaceae), against Tribolium castaneum (Coleoptera: Tenebrionidae). Turkish Journal of Agriculture and Forestry, 35(6), 623-629.
  68. Pascual-Villalobos, M. J., & Robledo, A. (1998). Screening for anti-insect activity in Mediterranean plants. Industrial crops and products, 8(3), 183-194.
  69. Olofintoye, L. K., Simon-Oke, I. A., & Omoregie, O. B. (2011). Larvicidal properties of Datura stramonium (jimson weed) and Nicotiana tabaccum (tobacco) extracts against the larvae of (Anopheles and Culex) mosquitoes. African Research Review, 5(2).
  70. Van Dam, N. M., & Hare, J. D. (1998). Biological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvae. Journal of Chemical Ecology, 24(9), 1529-1549.
  71. Ali, K., Shuaib, M., Ilyas, M., Hussain, F., Arif, M., Ali, S., & Hussain, F. (2017). Efficacy of various botanical and chemical insecticides against flea beetles on maize (Zea maize L.). PSM Veterinary Research, 2(1), 6-9.
  72. Javaid, A., Shafique, S., & Shafique, S. (2008). Herbicidal activity of Datura metel L. against Phalaris minor Retz. Pak. J. Weed Sci. Res, 14(3-4), 209-220.
  73. Sakadzo, N., Pahla, I., Muzemu, S., Mandumbu, R., & Makaza, K. (2018). Herbicidal effects of Datura stramonium (L.) leaf extracts on Amaranthus hybridus (L.) and Tagetes minuta (L.). Afr. J. Agric. Res., 13(34), 1754-1760.
  74. Ghosh, S., Tiwari, S. S., Srivastava, S., Sharma, A. K., Nagar, G., Kumar, K. A., Kumar, R., & Rawat, A. K. S. (2015). In vitro acaricidal properties of Semecarpus anacardium fruit and Datura stramonium leaf extracts against acaricide susceptible (IVRI-I line) and resistant (IVRI-V line) Rhipicephalus (Boophilus) microplus. Vet. Sci. Res. J., 101, 69-74.
  75. Shyma, K. P., Gupta, J. P., Ghosh, S., Patel, K. K., & Singh, V. (2014). Acaricidal effect of herbal extracts against cattle tick Rhipicephalus (Boophilus) microplus using in vitro studies. Parasitol. Res, 113(5), 1919-1926.
  76. Sharma, G. L. (2002). Studies on antimycotic properties of Datura metel. Journal of ethnopharmacology, 80(2-3), 193-197.
  77. Kalim, M., Hussain, F., Ali, H., Ahmad, I., & Iqbal, M. N. (2016). Antifungal activities of methanolic extracts of Datura inoxia. PSM Biological Research, 1(2), 70-73.
  78. Eftekhar, F., Yousefzadi, M., & Tafakori, V. (2005). Antimicrobial activity of Datura innoxia and Datura stramonium. Fitoterapia, 76(1), 118-120.
  79. Banso, A., & Adeyemo, S. (2006). Phytochemical screening and antimicrobial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri, 18(1).
  80. Reddy, B. U. (2009). Antimicrobial activity of Datura stramonium L. and Tylophora indica (Burm. f.) Merr. Pharmacologyonline, 1, 1293-1300.
  81. Altameme, H. J., Hameed, I. H., & Kareem, M. A. (2015). Analysis of alkaloid phytochemical compounds in the ethanolic extract of Datura stramonium and evaluation of antimicrobial activity. African Journal of Biotechnology, 14(19), 1668-1674.
  82. Bhardwaj, K., Kumar, S., & Ojha, S. (2016). Antioxidant activity and FT-IR analysis of Datura innoxia and Datura metel leaf and seed methanolic extracts. African Journal of Traditional, Complementary and Alternative Medicines, 13(5), 7-16.
  83. Murthy, B. K., Nammi, S., Kota, M. K., Rao, R. K., Rao, N. K., & Annapurna, A. (2004). Evaluation of hypoglycemic and antihyperglycemic effects of Datura metel (Linn.) seeds in normal and alloxan-induced diabetic rats. Journal of ethnopharmacology, 91(1), 95-98.
  84. Belayneh, Y. M., Birhanu, Z., Birru, E. M., & Getenet, G. (2019). Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). Journal of experimental Pharmacology, 11, 29.
  85. Bagewadi, Z. K., Muddapur, U. M., Madiwal, S. S., Mulla, S. I., & Khan, A. (2019). Biochemical and enzyme inhibitory attributes of methanolic leaf extract of Datura inoxia Mill. Environmental Sustainability, 2(1), 75-87.
  86. Gupta, A., Kumar, S., Mahindroo, N., & Saini, R. V. (2016). Bioactive fraction from Datura stramonium Linn. promotes human immune cells mediated cytotoxicity towards lung and breast cancer cells. Pharmacognosy Journal, 8(5).
  87. Gajendran, B., Durai, P., Varier, K. M., & Chinnasamy, A. (2020). A novel phytosterol isolated from Datura inoxia, RinoxiaB is a potential cure colon cancer agent by targeting BAX/Bcl2 pathway. Bioorganic & Medicinal Chemistry, 28(2), 115242.
  88. Pin, F., Vercouillie, J., Ouach, A., Mavel, S., Gulhan, Z., Chicheri, G. & Suzenet, F. (2014). Design of α7 nicotinic acetylcholine receptor ligands in quinuclidine, tropane and quinazoline series. Chemistry, molecular modeling, radiochemistry, in vitro and in rats evaluations of a [18 F] quinuclidine derivative. European journal of medicinal chemistry, 82, 214-224.
  89. Carroll, F. I., Blough, B. E., Mascarella, S. W., Navarro, H. A., Eaton, J. B., Lukas, R. J., & Damaj, M. I. (2010). Nicotinic acetylcholine receptor efficacy and pharmacological properties of 3-(Substituted phenyl)-2β-substituted tropanes. Journal of medicinal chemistry, 53(23), 8345-8353.
  90. Papke, R. L., Schiff, H. C., Jack, B. A., & Horenstein, N. A. (2005). Molecular dissection of tropisetron, an α7 nicotinic acetylcholine receptor-selective partial agonist. Neuroscience letters, 378(3), 140-144.
  91. Schmeller, T., Sporer, F., Sauerwein, M. & Wink, M. (1995). Binding of tropane alcaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie, 50(7), 493-495.
  92. Kirjavainen, A. K., Forsback, S., López-Picón, F. R., Marjamäki, P., Takkinen, J., Haaparanta-Solin, M., & Solin, O. (2018). 18F-labeled norepinephrine transporter tracer [18F] NS12137: radiosynthesis and preclinical evaluation. Nuclear medicine and biology, 56, 39-46.
  93. Carroll, F. I., Gray, J. L., Abraham, P., Kuzemko, M. A., Lewin, A. H., Boja, J. W., & Kuhar, M. J. (1993). 3-Aryl-2-(3'-substituted-1', 2', 4'-oxadiazol-5'-yl) tropane analogs of cocaine: affinities at the cocaine binding site at the dopamine, serotonin, and norepinephrine transporters. Journal of medicinal chemistry, 36(20), 2886-2890.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP