Vol 66 No 2 (2021): Journal of the Chilean Chemical Society
Original Research Papers


Published June 13, 2021
  • Impregnation,
  • Chitosan,
  • Physical and mechanical properties,
  • Wooden connectors
How to Cite
Cardenas, G., Ortiz-Ávila, D., Nuñez-Decap, M., & Opazo-Vega, A. (2021). EVALUATION OF BEHAVIOR OF CONNECTIONS THROUGH AUTOFLOWING SCREWS IN TREATED RADIATA PINE WOODEN PRESERVATIVES. Journal of the Chilean Chemical Society, 66(2), 5223-5229. Retrieved from


Wood is a great material, it has a disadvantage of early deterioration due to external agents. For this reason, it is interesting to create a new wooden preservative. It was studied one based on a natural polymer (chitosan) and nanoparticles (Si and Ti). Tests were carried out to characterize physical (density, moisture content, swelling and absorption) and mechanical properties (flexion, compression and hardness) of wood specimens with and without impregnation, and their joints with two types of self-drilling screws. Simple and lateral extraction test were carried out. Improvements in hardness and perpendicular compression are highlighted obtained, results indicate a stiffening of the fibers. This treatment achieves the material cross section hardening, coating it with components that help to delay the ignition and provide greater duration against external agents. From the extraction of screws, the impregnated wood allowed more rigid unions, with smaller displacements in comparison to the wood without treatment.



  2. Ramage MH, Burridge H, Busse-Wicher M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF and Sherman O. The wood from the trees: The use of timber in construction. Renew Sust Energ Rev 2017; 68: 33-359.
  3. CORMA. Chile debe ser referente de construcción en madera [www Document]. URLón-en-madera- (2016, accessed 11 October 2016).
  4. CORMA, recursos renovables. Plantaciones forestales y bosques naturales. Preguntas frecuentes. [www Document]. URL http:// › appsenado (accessed 11 October 2016).
  5. INFOR. Estadísticas Forestales [www Document]. Inst. For. Chile, INFOR. URL (2018, accessed 17 May 2018).
  6. Asdrubali F, Ferracuti B, Lombardi L, Guattari C, Evangelisti L and Grazieschi G. “A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications”. Build Environ 2017; 114: 307 – 332.
  7. Rodríguez C and Vergara E. Propiedades físicas y mecánicas de la madera de pinus canariensis crecido en el secano de la Región del Maule, Chile. Bosque 2008; 29 (3):192-196.
  8. Suirezs TM. “Efecto de la impregnación con CCA (cromo-cobre- arsénico) sobre las propiedades físicas y mecánicas de la madera de pinus Taeda L. implantado en la Provincia de Misiones”. Tesis de maestría, Universidad Nacional de Misiones, Facultad de Ciencias Forestales, Argentina, 2000.
  9. Montero DI. “Resistencia a la flexión estática de madera de pinus radiata D.Don impregnada con Cobre Alcalino Cuaternario (ACQ-D)”. Tesis de pregrado, Universidad de Chile, Facultad de Ciencias Forestales y conservación de la naturaleza, Chile, 2010.
  10. De Souza Almeida A, Criscuolo G, Hendrigo de Ameida T, Christoforo A, Chahund E, Branco L, Pinheiro R and Rocco F. Influence of CCA-A Preservative on Physical-Mechanical Properties of Brazilian Tropical Woods. Bioresourses 2019; 14 (2): 3030-3041.
  11. ASTM D1761:2012. American Society for Testing and Material. Standard Test Methods for Mechanical Fasteners in Woods.
  12. Luna JN, Bejarano JO and González JM. Esfuerzo de extracción de clavos y tornillos para madera en cuatro especies de pino de Durango, México. Investigación y ciencia de la Universidad Autónoma de Aguascalientes 2014; Número 61: 41 – 47.
  13. NCh 1198:2014. “Madera – Construcciones en madera – Cálculo”.
  14. NCh 987:1986. “Madera – Determinación de las propiedades mecánicas – Ensayo de flexión estática”.
  15. NCh 176/2:1988. “Madera – Parte 2: Determinación de la Densidad”
  16. NCh 176/1:1984. “Madera – Parte 1: Determinación de la Humedad”.
  17. UNE-EN 317:1994. “Tableros de partículas y tableros de 583 fibras. Determinación de la hinchazón en espesor después de inmersión en agua. AENOR, 584, Madrid, España. URL.
  18. NCh 973:1986. “Madera – Determinación de las propiedades mecánicas – Ensayo de compresión paralelas”.
  19. NCh 974:1986. “Madera – Determinación de las propiedades mecánicas – Ensayo de compresión perpendicular a las fibras”.
  20. NCh 978:1986. “Madera – Determinación de las propiedades mecánicas – Ensayo de dureza”.
  21. Cárdenas-Triviño G and Cruzat-Contreras C. Study of aggregation of Gold Nanoparticles in Chitosan. J Clust Sci 2008; 29: 1081-1088,
  22. GB/T 1941:2009. Wood- determination of static hardness, China.
  23. Winandy JE. Effect of waterborne preservative treatment on mechanical properties: a review. Woodstock (MD) AWPA, In: Proceedings 1995; vol.91: 17-33.
  24. Pizzi, A. A new approach to nontoxic, wide-spectrum, ground-contact wood preservatives. Part 1. Approach and reaction mechanism. Holsforchm 1993; 47 (3): 253-260.
  25. Yildiz UC, Temiz A, Gezer ED and Yildiz S. Effects of wood preservatives on mechanical properties of yellow pine (pinus sylvestris L) wood. Build Environ 2004; 39: 1071
  26. Su W. Functional synthesis of tree extractives and the application of wood preservation. PhD. Thesis. Northeast Forestry University, Harbin, China, 2008.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP