Vol 66 No 2 (2021): Journal of the Chilean Chemical Society
Original Research Papers


Fatemeh Mollaamin
Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Published June 13, 2021
  • geometry, CoV, inhibitor, TMH, drug delivery, physico-chemical properties, NMR, hydrogen bonding, water, IR, anti-coronavirus
How to Cite
Mollaamin, F. (2021). THERMODYNAMIC RESEARCH ON THE INHIBITORS OF CORONAVIRUS THROUGH DRUG DELIVERY METHOD. Journal of the Chilean Chemical Society, 66(2), 5195-5205. Retrieved from


Based on CoVs, the genomic structure is arranged in a +ssRNA with   approximately 30 kb in length  which is the biggest known RNA viruses  including  a 5′-cap structure and 3′-poly-A tail.  CoVs, (positive stranded RNA viruses), can infect humans and multiple species of animals, cause enteric, respiratory, and central nervous system diseases in many species. These viruses are important for anti-CoV drug delivery through a pivotal function in viral gene expression and replication through the proteolytic processing of replicase polyproteins.

In this paper, it has been illustrated  the linkage  of 6 inhibitors of N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide, “inh1”, NSC 158362, “inh2”,JMF 1586 ,“inh3”,(N-(2-aminoethyl)-1-1ziridine-ethanamine) , “inh4” ,[(Z)-1-thiophen-2-ylethylideneamino]thiourea, “inh5” and Vanillinbananin, “inh6”,  to CoVs by forming the complexes of  “inhibitor- CoV” in water phase  through   the H-bonding using  some physico-chemical properties including  heat of formation , Gibbs free energy , electronic energy , charge distribution of active parts in the  hydrogen bonding ,NMR estimation of inhibitor jointed to the database amino acids fragment of  Tyr-Met-His as the selective zone of the CoV, positive  frequency and intensity of different normal modes of these structures.

The theoretical calculations were done at various levels of theory in water simulated medium to gain the more accurate equilibrium geometrical results, and infrared spectral data for each of the complex proposed drugs of N-terminal or O-terminal auto-cleavage substrate were individually determined to elucidate the structural flexibility and substrate binding of six inhibitors including jointed to TMH, inh[1-6]-TMH. A comparison of these structures with two configurations provides new insights for the design of substrate-based inhibitors targeting CoV. This indicates a feasible model for designing wide-spectrum inhibitors against CoV-associated diseases.

The structure-based optimization of these structures has yielded two more efficacious lead compounds, N and O atoms through forming the hydrogen bonding (hydrogen-bonding) with potent inhibition against CoV (Tyr160-Met161-His162) because of water polar medium which has been abbreviated as TMH in this paper.




  1. Lai, M. M. C., and K. V. Holmes. 2001. Coronaviridae: the viruses and their replication, p. 1163–1179. In D. M. Knipe and P. M. Howley (ed.), Fields virology, 4th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
  2. Pereira, H. G. 1989. Coronaviridae, In J. S. Porterfield (ed.), ANDREWES’ viruses of vertebrates, 5th ed. Bailliere Tindall, London, United Kingdom, 42–57.
  3. Spaan, W. J. M., and D. Cavanagh. 2004. Coronaviridae, In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball (ed.), Virus taxonomy: eighth report of the International Committee on Taxonomy of Viruses. Elsevier-Academic Press, London, United Kingdom, 945-962.
  4. Ziebuhr, J. 2005. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 287,57-94
  5. Rolain, J.M. Colson, P. Raoult, D. 2007. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century, Int J Antimicrob Agents, 30, 297-308.
  6. Hung, H.M. Yang, S.L. Chen, C.J. Chiu, C.H. Kuo, C.Y. Huang, K.A. et al. 2019.Molecular epidemiology and clinical features of rhinovirus infections among hospitalized patients in a medical center in Taiwan , J Microbiol Immunol Infect, 52 , 233-241
  7. D. Chang, M. Lin, L. Wei, L. Xie, G. Zhu, C.S. Dela Cruz, et al .2020. Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China ,JAMA .
  8. Lai, Chih-Cheng; Shih, Tzu-Ping; Ko, Wen-Chien; Tang, Hung-Jen; Hsueh, Po-Ren .2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents: 105924.
  9. Casanova, L.M. Jeon, S. Rutala, W.A. Weber, D.J. SobseyM.D.2020. Effects of air temperature and relative humidity on coronavirus survival on surfaces, Appl Environ Microbiol, 76 (2010), 2712-2717.
  10. Jiang, S. Du, L. Shi, Z. 2020. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies, Emerg Microbes Infect, 9, 275-277.
  11. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an.2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 0 (10223): 507–513.
  12. Hessen, Margaret Trexler .2020. Novel Coronavirus Information Center: Expert guidance and commentary. Elsevier Connect. Archived from the original on 30 January 2020. Retrieved 31 January 2020.
  13. Ziebuhr J., Herold,J. and Siddell,S.G. 1995.Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J. Virol., 69, 4331-4338.
  14. Wuhan Coronavirus Death Rate - Worldometer. Archivedfrom the original on 31 January 2020. Retrieved 2 February 2020.
  15. J.F. Chan, K.H. Kok, Z. Zhu, H. Chu, K.K. To, S. Yuan, et al.2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg Microbes Infect, 9,221-236.
  16. Ziebuhr J., Heusipp,G. and Siddell,S.G. 1997. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J. Virol., 71, 3992-3997.
  17. Drosten, C., Gunther, Preiser, S. W. van der Werf, S. Brodt, H. R. Becker, S. Rabenau, H. Panning, M. Kolesnikova, L. Fouchier, R. A. Berger, Burguiere, A. A. M. Cinatl, J. Eickmann, M. Escriou, N. Grywna, K. Kramme, S. Manuguerra, J. C. Muller, S. Rickerts, V. Sturmer, M. Vieth, S. Klenk, H. D. Osterhaus, A. D. Schmitz, H. and Doerr. H. W. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl.J. Med. 348,1967-1976.
  18. Fouchier, R. A., T. Kuiken, M. Schutten, G. van Amerongen, G. J. van Doornum, B. G. van den Hoogen, M. Peiris, W. Lim, K. Stohr, and A. D.Osterhaus. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature .423,240
  19. Ksiazek, T. G., D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E.Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J.Bellini, and L. J. Anderson. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966.
  20. Kuiken, T., R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim, A. E.Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris, and A. D.Osterhaus. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 362,263–270.
  21. Peiris, J. S., S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang,R. W. Yung, T. K. Ng, and K. Y. Yuen. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325.
  22. Hon CC, Lam TY, Shi ZL, Drummond AJ, Yip CW, Zeng F, Lam PY, Leung FC. 2008. Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol. 82,1819-1826.
  23. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310:676–679.
  24. Wang LF, Eaton BT.2007. Bats, civets and the emergence of SARS. Curr Top Microbiol Immunol. 315,325-344.
  25. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, Godeke GJ, Jonges M, Farag E, Diab A, et al.2014. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 14(2):140-5
  26. Abdel-Moneim AS.2014. Middle East respiratory syndrome coronavirus (MERS-CoV): evidence and speculations. Arch Virol. 159(7):1575-84.
  27. Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, Anti P,
  28. Agbenyega O, Meyer B, et al.2013. Human betacoronavirus 2c EMC/2012-related viruses in bats,Ghana and Europe. Emerg Infect Dis. 19,456-459.
  29. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M, et al.2013. Coronaviruses in bats from Mexico. J Gen Virol. 94,1028-1038.
  30. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD,
  31. Haagmans BL, Gorbalenya AE, Snijder EJ, et al.2012. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 3(6). e00473-12.
  32. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Drosten C, Drexler JF, Preiser W.2013. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 19, 1697-1699.
  33. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med. 2003; 349:2431–2441.
  34. Russell, C.D. Millar, J.E. BaillieJ.K. 2020. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury ,Lancet. 395 , 473-475.
  35. Spaan, W. J. M., and D. Cavanagh. 2004. Coronaviridae, 945-962. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball (ed.), Virus taxonomy: eighth report of the International Committee on Taxonomy of Viruses. Elsevier-Academic Press, London, United Kingdom.
  36. Cavanagh, D. 2003. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32,567-582.
  37. Ignjatoviæ, J., and S. Sapats. 2000. Avian infectious bronchitis virus. Rev. Sci. Tech. 19:493-508.
  38. Ziebuhr J., Snijder,E.J. and Gorbalenya,A.E. 2000.Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 81, 853-879.
  39. Ryu, S. Chun, B.C.2020. Epidemiological characteristics of 2019 novel coronavirus: an interim review ,Epidemiol Health, 42 ,Article e2020006.
  40. Lee, S.H. Ruan, S.Y. Pan, S.C. Lee, T.F. Chien, J.Y. Hsueh P.R.2019. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units,J Microbiol Immunol Infect, 52 ,920-928.
  41. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an.2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 0 (10223): 507-513.
  42. Vaguine A.A., Richelle,J. and Wodak,S.J. 1999. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D, 55, 191–205.
  43. Vriend G. 1990.WHAT IF: a molecular modeling and drug design program. J. Mol. Graphics, 8, 52-56.
  44. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. 2010. Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
  45. Mollaamin F., Monajjemi M.,2015. Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations, Journal of Computational and Theoretical Nanoscience, 12(6), 1030-1039.
  46. Wilfred F., Gunsteren V., and Berendsen H.J.C.,1990. Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry, Angewandte Chemie International Edition in English, 29(9), 992-1023.
  47. Ni W., Li G. , Zhao J. , Cui J. , Wang R. , Gao Z., Liu Y. 2018. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect Dis (Lond) , ,50(7),507-513.
  48. Andrews C.W. , Wisowaty J. , Davis A.O., Crouch R.C., Martin G.E.,1995. Molecular modeling, NMR spectroscopy, and conformational analysis of 3′, 4′‐ anhydrovinblastine. Journal of Heterocyclic Chemistry, 32 (3): 1011-1017.
  49. Monajjemi, M. Honarparvar, B. Nasseri, S.M. Khaleghian, M. ,2009. NQR and NMR study of hydrogen bonding interactions in anhydrous and monohydrated guanine cluster model: A computational study, Journal of Structural Chemistry,50(1), pp. 67-77.
  50. Monajjemi, M. Ghiasi, R. Seyed Sadjadi, M.A.2003. Metal-stabilized rare tautomers: N4 metalated cytosine (M = Li , Na , K , Rb and Cs ), theoretical views, Applied Organometallic Chemistry, 17(8), 635-640.
  51. Monajjemi M., Mollaamin F., Gholami M.R. , Yoosbashizadeh H., Sadrnezhad S.K., Passdar H.,2003. Quantum chemical parameters of some organic corrosion inhibitors, pyridine, 2-picoline 4-picoline and 2,4-lutidine, adsorption at aluminum surface in hydrocholoric and nitric acids and comparison between two acidic media, Main Group Metal Chemistry, 26, 349-361.
  52. Ghalandari B., Monajjemi M., Mollaamin F.,2011. Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery, Journal of Computational and Theoretical Nanoscience, 2011, 8, 1212-1219.
  53. Cohen G. and Eisenberg H.,1968. Deoxyribonucleate solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers. 6(8), 1077-100.
  54. Beak P., Covington J.B., Smith S.G., White J.M., and Zeiger J.M.,1980. Displacement of protomeric equilibriums by self-association: hydroxypyridine-pyridone and mercaptopyridine-thiopyridone isomer pairs , J. Org. Chem. 45(8),1354-1362.
  55. Sarasia E.M., Afsharnezhad S., Honarparvar B., Mollaamin F., Monajjemi M., 2011. Estrogenic active stilbene derivatives as anti-cancer agents: A DFT and QSAR study , Physics and Chemistry of Liquids, 2011, 49, 561-571.
  56. Monajjemi M., Mahdavian L., Mollaamin F., Khaleghian M.,2009. Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study , Russian Journal of Inorganic Chemistry, 54, 1465-1473.
  57. Ardalan, T. Ardalan, P. Monajjemi, M. , 2014.Nano theoretical study of a C 16 cluster as a novel material for vitamin C carrier, Fullerenes Nanotubes and Carbon Nanostructures, 22(8), 687-708
  58. Kirkwood J.G.,1934. On the Theory of Strong Electrolyte Solutions, J. Chem. Phys. 2, 767 .
  59. Kirkwood J.G., 1939. The Dielectric Polarization of Polar Liquids, J. Chem. Phys. 7, 911.
  60. Onsager L.,1936 Electric Moments of Molecules in Liquids, J. Am. Chem. Soc. 58(8), 1486-1493.
  61. Wong M.A., Frisch M.J., and Wiberg K.B., 1991. Solvent effects.1.The mediation of electrostatic effects by solvents, J. Am. Chem. Soc. 113(13), 4776-4782.
  62. Jerzy Cioslowski and Martin Martinov, 1995, Effects of solvation on chemical bonding: An electron‐flow analysis, J. Chem. Phys. 103, 4967.
  63. Lee, V.S. Nimmanpipug, P. Mollaamin, F. (...), Thanasanvorakun, S. Monajjemi, M.2009. Investigation of single wall carbon nanotubes electrical properties and normal mode analysis: Dielectric effects, Russian Journal of Physical Chemistry A, 83(13), 2288-2296.
  64. Monajjemi, M. Farahani, N. Mollaamin, F.2012. Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranes, Physics and Chemistry of Liquids, 50(2), 161-172.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP