VISIBLE RANGE PHOTOCATALYSTS FOR SOLID PHASE PHOTOCATALYTIC DEGRADATION OF POLYETHYLENE AND POLYVINYL CHLORIDE
- Photocatalysts,
- Polyvinylchloride,
- Polyethylene,
- Solar radiation
Copyright (c) 2017 Apeksha Gupta, Y. N. Lakshmi, R. Manivannan, S. Noyel Victoria
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Solid phase photocatalytic degradation of polyethylene (PE) and polyvinyl chloride (PVC) with various photocatalysts such as ceria annealed at 350°C and 850°C, zinc oxide annealed at 250°C, copper sulfide and titania particles was studied under different light sources. Except titania, all the other photocatalysts performed reasonably well both in the visible and ultra-violet (UV) radiations. Ceria annealed at 850°C showed degradation efficiencies higher than 70% for PVC in the fluorescent and solar radiation. Ceria annealed at 350°C showed degradation efficiencies higher than 75% for polyethylene in fluorescent, solar and UV radiation. The Fourier transform infrared spectroscopy studies show the presence of adsorbed carbon dioxide on the degraded polymer- photocatalyst composite films. The UV-visible spectroscopic studies show that the ceria, zinc oxide and copper sulfide photocatalysts are active in the visible spectrum resulting in enhanced degradation efficiency in fluorescent and solar radiation.
References
- J. Shang, M.Chai, Y. Zhu, J. Solid State Chemistry. 174, 104, (2003).
- W. Asghar, I.A. Qazi, H. Ilyas, A.A. Khan, M.A. Awan, M.R. Aslam, J. Nanomaterials, 1, (2011).
- X.U. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, J. Molecular Catalysis A: Chemical 268, 101, (2007).
- Fa W, Zan L, Gong C, Zhong J, Deng K, Applied Catalysis B: Environmental 79, 216, (2008).
- C. Yang, C. Gong, T. Peng, K. Deng, L. Zan, J. Hazardous Materials 178, 152, (2010).
- X. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, Applied Surface Science 254, 1825, (2008).
- F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Applied Physics Letters 80, 127, (2002).
- M.K. Mohammad, H. Amin, N. Nasim, M. Lee, Materials Research 17,1039, (2014).
- R. Yang, P.A. Christensen, T.A. Egerton, J.R White, J Polymer Degradation and Stability 95, 1533, (2010).
- S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, P. Das, B.K. Dutta, J Hazardous Materials 154, 230, (2008).
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, S.M.D. Patrick, D.D. Dionysiou, Applied Catalysis B: Environmental 125, 331, (2012).
- T. Wirunmongkol, N. Charoen, S. Pavasupree, Energy Procedia 34, 801, (2013).
- A.B. Sifontes, M. Rosales, F.J. Mendez, O. Oviedo, T. Zoltan, J. Nanomaterials, 1, (2013).
- A. Singh, R. Manivannan, S.N. Victoria, Arabian Journal of Chemistry, Article in press, (2015).
- R.T. Thomas, N. Sandhyarani, RSC Advances 3, 14080, (2013).
- M. Zhang, J. Wu, D. Lu, J. Yang, International J. Photoenergy, 2013, (2013).
- R. Bini, V. Schettino, Imperial College Press, London, 259, (2014).
- R.K.Velu Microbiological Research in Agroecosystem Management, Springer India, 2013.
- Y.V. Glazkovskii, V.E. Zgayevskii, S.P. Ruhinskii, N. M. Bakardzhiyev, Vysokomol. Soyed 8, 1472, (1966).
- E. Balan, A.M. Saitta, F. Mauri, G. Calas, American Mineralogist 86, 1321, (2001).
- T.S. Renuga Devi, S. Gayathri, International J. Pharmaceutical Sciences Review and Research 2, 106, (2010).
- E.Yousif, J Taibah Uni. for Sci. 7, 79, (2013).
- X. Colom, F. Carrillo, F. Nogues, P. Garriga, Polymer Degradation and Stability 80, 543, (2003).
- D. Jain, H.K. Daima, S. Kachhwaha, S.L. Kothari, Digest J. Nanomaterials and Biostructures 4, 557(2009).
- M. Arivazhagan, K. Sambathkumar, S. Jeyavijayan, J. Pure and Applied Physics 48, 716-722, (2010).
- S.G. Prasad, A. De, U. De, International J. of Spectroscopy 810936, 1, (2011).
- G.S. Uthayakumar, J. Chandhuru, S. Inbasekaran , A. Sivasubramanian, Asian J. Biomedical and Pharmaceutical Sci. 3, 12, (2013).
- S. Bhattacharyya, A. Gedanken, Microporous and Mesoporous Materials 110, 553, (2008).
- R.Vajtai, Springer Handbook of Nanomaterials 528, 2013.
- A.M.D. Farias, D.N. Thanh, M.A. Fraga, Applied Catalysis B: Environmental 93, 250, (2010).
- Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, Advances in Nanoparticles 2, 45, (2013).
- H. Tan, Z. Zhao, W. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Appl. Mater. Interfaces 6, 19184, (2014).
- S.K. Anirban, T. Paul, A. Dutta, RSC Adv. 5, 50186, (2015).
- J. W. Hu, Advanced Materials and Structural Engineering, CRC Press London, (2016).
- H.R. Pouretedal, A. Norozi, H. Keshavarz, A. Semnani, J. Hazardous Materials 162, 674, (2009).
- D.B. Smith, Photochemistry, Royal Society of Chemistry 17, (1986).
- S. Cho, W. Choi, J. Photochemistry and Photobiology A: Chemistry 143, 221, (2001).