Vol 65 No 4 (2020): Journal of the Chilean Chemical Society


Bruno F. Urbano
Universidad de Concepción
Published November 11, 2020
  • Polymer nanocomposite,
  • smart polymers,
  • nanofiller,
  • external stimuli,
  • physical stimuli


Nanocomposite polymers have received considerable interest in research for the last three decades. Those nanocomposite polymers that are sensitive to a stimulus such as pH, temperature, magnetism, and electricity, among others, called smart or intelligent nanocomposite polymers had received even greater attention due to their potential technological applications. Applications of these polymers include flexible electronic devices, sensors, self-healing polymers, shape-memory materials, etc. The material's sensitivity can come from both the polymer that acts as a matrix and the nanofiller, resulting in a material that combines properties of each of its components and that each one will not have separately. This mini-review aims to provide an update on the most recent and significant applications in the area of stimuli-responsive polymer nanocomposites, emphasizing the most innovative applications developed in the last three years.



  1. J.H. Koo, Polymer nanocomposites, McGraw-Hill Professional Pub.2006.
  2. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, Journal of Materials Research. 8, 1185-1189, (1993)
  3. S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Materials Science. 1, 2-30, (2019)
  4. D. Ponnamma, J.-J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Pasha, M.B. Ahamed, J. Krishnegowda, B. Chandrashekar, Synthesis, optimization and applications of ZnO/polymer nanocomposites, Materials Science and Engineering: C. 98, 1210-1240, (2019)
  5. L. Hsu, C. Weder, S.J. Rowan, Stimuli-responsive, mechanically-adaptive polymer nanocomposites, Journal of Materials Chemistry. 21, 2812-2822, (2011)
  6. K.I. Winey, R.A. Vaia, Polymer nanocomposites, MRS bulletin. 32, 314-322, (2007)
  7. W. Chow, Z.M. Ishak, Smart polymer nanocomposites: A review, Express Polymer Letters. 14, 416-435, (2020)
  8. J. Leng, A.K.-t. Lau, Multifunctional polymer nanocomposites, CRC press2010.
  9. A. Pourjavadi, S. Rahemipoor, M. Kohestanian, Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization, Composites Science and Technology. 188, 107951, (2020)
  10. A. Seyfoori, S. Sarfarazijami, S. Seyyed Ebrahimi, pH-responsive carbon nanotube-based hybrid nanogels as the smart anticancer drug carrier, Artificial cells, nanomedicine, and biotechnology. 47, 1437-1443, (2019)
  11. W. Wu, Stretchable electronics: functional materials, fabrication strategies and applications, Science and Technology of Advanced Materials. 20, 187-224, (2019)
  12. M. Bashir, P. Rajendran, A review on electroactive polymers development for aerospace applications, Journal of Intelligent Material Systems and Structures. 29, 3681-3695, (2018)
  13. D. Feldman, Polymers and polymer nanocomposites for cancer therapy, Applied Sciences. 9, 3899, (2019)
  14. M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, M. Gupta, Advanced metal matrix nanocomposites, Metals. 9, 330, (2019)
  15. S. Bull, Multifunctional polymer nanocomposites for industrial applications, Nanofibers and Nanotechnology in Textiles, Elsevier2007, pp. 256-280.
  16. E. Kazemi-Khasragh, F. Bahari-Sambran, C. Platzer, R. Eslami-Farsani, The synergistic effect of graphene nanoplatelets–montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites, Tribology International. 106472, (2020)
  17. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites, Polymer Composites. (2020)
  18. C. Miao, W.Y. Hamad, Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites, Current Opinion in Solid State and Materials Science. 23, 100761, (2019)
  19. T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang, Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites, Applied Clay Science. 169, 48-66, (2019)
  20. J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai, Q. Zhang, Q. Peng, Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment, Chinese Chemical Letters. 31, 992-995, (2020)
  21. E. Akpan, X. Shen, B. Wetzel, K. Friedrich, Design and synthesis of polymer nanocomposites, Polymer Composites with Functionalized Nanoparticles, Elsevier2019, pp. 47-83.
  22. B. Ballarin, E. Boanini, L. Montalto, P. Mengucci, D. Nanni, C. Parise, I. Ragazzini, D. Rinaldi, N. Sangiorgi, A. Sanson, PANI/Au/Fe3O4 nanocomposite materials for high performance energy storage, Electrochimica Acta. 322, 134707, (2019)
  23. A. Kumar, K. Sharma, A.R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications, Journal of materials science. 54, 5992-6026, (2019)
  24. T. Liu, T. Zhou, Y. Yao, F. Zhang, L. Liu, Y. Liu, J. Leng, Stimulus methods of multi-functional shape memory polymer nanocomposites: A review, Composites Part A: Applied Science and Manufacturing. 100, 20-30, (2017)
  25. N. Olivera, T.B. Rouf, J.C. Bonilla, J.G. Carriazo, N. Dianda, J.L. Kokini, Effect of LAPONITE® addition on the mechanical, barrier and surface properties of novel biodegradable kafirin nanocomposite films, Journal of Food Engineering. 245, 24-32, (2019)
  26. M. Albdiry, B. Yousif, Toughening of brittle polyester with functionalized halloysite nanocomposites, Composites Part B: Engineering. 160, 94-109, (2019)
  27. Y. Lin, S. Hu, G. Wu, Structure, Dynamics, and Mechanical Properties of Polyimide-Grafted Silica Nanocomposites, The Journal of Physical Chemistry C. 123, 6616-6626, (2019)
  28. G. Pang, S. Zhang, X. Zhou, H. Yu, Y. Wu, T. Jiang, X. Zhang, F. Wang, Y. Wang, L.W. Zhang, Immunoactive polysaccharide functionalized gold nanocomposites promote dendritic cell stimulation and antitumor effects, Nanomedicine. 14, 1291-1306, (2019)
  29. Q. Lu, H.S. Jang, W.J. Han, J.H. Lee, H.J. Choi, Stimuli-responsive graphene oxide-polymer nanocomposites, Macromolecular Research. 27, 1061-1070, (2019)
  30. D. Ponnamma, H. Parangusan, A. Tanvir, M.A.A. AlMa'adeed, Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles, Materials & Design. 184, 108176, (2019)
  31. Z. Zarnegar, J. Safari, Z. Zahraei, Design, synthesis and antimicrobial evaluation of silver decorated magnetic polymeric nanocomposites, Nano-Structures & Nano-Objects. 19, 100368, (2019)
  32. M. Li, Y. Shi, H. Gao, Z. Chen, Bio‐Inspired Nanospiky Metal Particles Enable Thin, Flexible, and Thermo‐Responsive Polymer Nanocomposites for Thermal Regulation, Advanced Functional Materials. 30, 1910328, (2020)
  33. Y. Chen, X. Zhao, C. Luo, M.-B. Yang, B. Yin, A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance, Composites Part A: Applied Science and Manufacturing. 105931, (2020)
  34. Y. Zhang, K. Chen, Y. Li, J. Lan, B. Yan, L. Shi, R. Ran, High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor, ACS Applied Materials & Interfaces. 11, 47350-47357, (2019)
  35. R.-Q. Zhang, L.-B. Wang, R.-X. Bai, Y.-L. Luo, F. Xu, Y.-S. Chen, Sensitive conductive polymer nanocomposites from multiwalled carbon nanotube coated with polypyrrole and hydroxyl-terminated poly (butadiene-co-acrylonitile) polyurethane for detection of chloroform vapor, Composites Part B: Engineering. 173, 106894, (2019)
  36. S. Li, Y. Zhang, Q. You, Q. Wang, G. Liao, D. Wang, Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 558, 392-401, (2018)
  37. C. Wang, L. Ma, Q. Wen, B. Wang, R. Han, C. Hao, K. Chen, Enhanced electrorheological characteristics of titanium oxide@ H2Ti2O5 nanotube core/shell nanocomposite, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 578, 123641, (2019)
  38. M. Pastucha, Z. Farka, K. Lacina, Z. Mikušová, P. Skládal, Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments, Microchimica Acta. 186, 312, (2019)
  39. R. Kurahatti, A. Surendranathan, S. Kori, N. Singh, A. Kumar, S. Srivastava, Defence applications of polymer nanocomposites, Defence Science Journal. 60, (2010)
  40. M. Rong, M. Zhang, W. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Materials science and technology. 22, 787-796, (2006)
  41. Y. Ou, F. Yang, Z.Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization, Journal of Polymer Science Part B: Polymer Physics. 36, 789-795, (1998)
  42. C. Harito, D.V. Bavykin, B. Yuliarto, H.K. Dipojono, F.C. Walsh, Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications, Nanoscale. 11, 4653-4682, (2019)
  43. B. Wang, D. Peng, R. Lv, B. Na, H. Liu, Z. Yu, Generic melt compounding strategy using reactive graphene towards high performance polyethylene/graphene nanocomposites, Composites Science and Technology. 177, 1-9, (2019)
  44. X. Wu, S. Takeshita, K. Tadumi, W. Dong, S. Horiuchi, H. Niino, T. Furuya, S. Yoda, Preparation of noble metal/polymer nanocomposites via in situ polymerization and metal complex reduction, Materials Chemistry and Physics. 222, 300-308, (2019)
  45. M. Herrero, M. Asensio, K. Núñez, J.C. Merino, J.M. Pastor, Morphological, Thermal, and Mechanical Behavior of Polyamide11/Sepiolite Bio‐Nanocomposites Prepared by Melt Compounding and In Situ Polymerization, Polymer Composites. 40, E704-E713, (2019)
  46. I. Bayraktar, D. Doganay, S. Coskun, C. Kaynak, G. Akca, H.E. Unalan, 3D printed antibacterial silver nanowire/polylactide nanocomposites, Composites Part B: Engineering. 172, 671-678, (2019)
  47. V.A. Tanna, J.S. Enokida, E.B. Coughlin, H.H. Winter, Functionalized Polybutadiene for Clay–Polymer Nanocomposite Fabrication, Macromolecules. 52, 6135-6141, (2019)
  48. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites—a review, Materials science and engineering: A. 393, 1-11, (2005)
  49. H. Behniafar, A. Ahmadi-khaneghah, M. Yazdi, Enhanced heat stability and storage modulus in novel PTMO-intercalated clay platelets/PTMO-based polyurethane nanocomposites, Journal of Polymer Research. 23, 202, (2016)
  50. V. S Wadi, K.K. Jena, K. Halique, S.M. Alhassan, Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide, ACS Omega. (2020)
  51. L. Toledo, D. Palacio, S. Sánchez, B.F. Urbano, Pluronic-coated nanoparticles for enhanced spatial distribution and increased softness of nanocomposite hydrogels, Journal of Materials Science. 55, 8968-8982, (2020)
  52. L. Toledo, D.A. Palacio, B.F. Urbano, Tuning the softness of poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels through the addition of PEG coated nanoparticles, Journal of Colloid and Interface Science. 578, 749-757, (2020)
  53. J. Cha, J. Kim, S. Ryu, S.H. Hong, Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets, Composites Part B: Engineering. 162, 283-288, (2019)
  54. C. Min, D. Liu, J. Qian, Z. He, W. Jia, H. Song, L. Guo, High mechanical and tribological performance polyimide nanocomposites using amine-functionalized graphene nanosheets, Tribology International. 131, 1-10, (2019)
  55. J. Niskanen, H. Tenhu, How to manipulate the upper critical solution temperature (UCST)?, Polymer Chemistry. 8, 220-232, (2017)
  56. Q. Zhang, R. Hoogenboom, Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures, Progress in Polymer Science. 48, 122-142, (2015)
  57. R. Hoogenboom, Chapter 2 - Temperature-Responsive Polymers: Properties, Synthesis, and Applications, in: M.R. Aguilar, J. San Román (Eds.), Smart Polymers and their Applications (Second Edition), Woodhead Publishing2019, pp. 13-44.
  58. J. Yue, L. He, Y. Tang, L. Yang, B. Wu, J. Ni, Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation, Journal of Photochemistry and Photobiology B: Biology. 197, 111530, (2019)
  59. N.M. Tatiana, V. Cornelia, R. Tatia, C. Aurica, Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application, Colloid and Polymer Science. 296, 1555-1571, (2018)
  60. Ö. Demir Oğuz, D. Ege, Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes, Materials. 11, 604, (2018)
  61. M.G. Arafa, R.F. El-Kased, M.M. Elmazar, Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents, Scientific Reports. 8, 13674, (2018)
  62. L. Li, R. Niu, Y. Zhang, Ag–Au bimetallic nanocomposites stabilized with organic–inorganic hybrid microgels: synthesis and their regulated optical and catalytic properties, RSC Advances. 8, 12428-12438, (2018)
  63. Q. Feng, D. Tang, H. Lv, W. Zhang, W. Li, Surface-initiated ATRP to modify ZnO nanoparticles with poly(N-isopropylacrylamide): Temperature-controlled switching of photocatalysis, Journal of Alloys and Compounds. 691, 185-194, (2017)
  64. S. Van Berkum, T.J. Dee, P.A. Philipse, H.B. Erné, Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel, International Journal of Molecular Sciences. 14, (2013)
  65. J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic Nanoparticles: From Design and Synthesis to Real World Applications, Nanomaterials (Basel, Switzerland). 7, 243, (2017)
  66. H. Yang, W.R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, X. Chen, 3D Printed Photoresponsive Devices Based on Shape Memory Composites, Advanced Materials. 29, 1701627, (2017)
  67. G.D. Soto, C. Meiorin, D.G. Actis, P. Mendoza Zélis, O. Moscoso Londoño, D. Muraca, M.A. Mosiewicki, N.E. Marcovich, Magnetic nanocomposites based on shape memory polyurethanes, European Polymer Journal. 109, 8-15, (2018)
  68. W. Zhao, F. Zhang, J. Leng, Y. Liu, Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites, Composites Science and Technology. 184, 107866, (2019)
  69. H. Wei, Q. Zhang, Y. Yao, L. Liu, Y. Liu, J. Leng, Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite, ACS Applied Materials & Interfaces. 9, 876-883, (2017)
  70. Y. Wang, B. Li, F. Xu, Z. Han, D. Wei, D. Jia, Y. Zhou, Tough Magnetic Chitosan Hydrogel Nanocomposites for Remotely Stimulated Drug Release, Biomacromolecules. 19, 3351-3360, (2018)
  71. P.P. Deshpande, N.G. Jadhav, V.J. Gelling, D. Sazou, Conducting polymers for corrosion protection: a review, Journal of Coatings Technology and Research. 11, 473-494, (2014)
  72. M. Ates, A review study of (bio)sensor systems based on conducting polymers, Materials Science and Engineering: C. 33, 1853-1859, (2013)
  73. T.K. Das, S. Prusty, Review on Conducting Polymers and Their Applications, Polymer-Plastics Technology and Engineering. 51, 1487-1500, (2012)
  74. D.W. Hatchett, M. Josowicz, Composites of Intrinsically Conducting Polymers as Sensing Nanomaterials, Chemical Reviews. 108, 746-769, (2008)
  75. C. Yang, Z. Liu, C. Chen, K. Shi, L. Zhang, X.-J. Ju, W. Wang, R. Xie, L.-Y. Chu, Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators, ACS Applied Materials & Interfaces. 9, 15758-15767, (2017)
  76. X. Wan, F. Zhang, Y. Liu, J. Leng, CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors, Carbon. 155, 77-87, (2019)
  77. A. Gangrade, B. Gawali, P.K. Jadi, V.G.M. Naidu, B.B. Mandal, Photo-Electro Active Nanocomposite Silk Hydrogel for Spatiotemporal Controlled Release of Chemotherapeutics: An In Vivo Approach toward Suppressing Solid Tumor Growth, ACS Applied Materials & Interfaces. 12, 27905-27916, (2020)
  78. J. Zeng, W. Duan, M. Li, Y. Xue, Chapter 11 - Plasmonic Metallic Nanostructures as Colorimetric Probes for Environmental Pollutants, in: X. Wang, X. Chen (Eds.), Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier2019, pp. 327-352.
  79. I. Pastoriza-Santos, C. Kinnear, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Plasmonic polymer nanocomposites, Nature Reviews Materials. 3, 375-391, (2018)
  80. C.-H. Zhu, Y. Lu, J. Peng, J.-F. Chen, S.-H. Yu, Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves, Advanced Functional Materials. 22, 4017-4022, (2012)
  81. H. Li, Y. Yao, H. Shi, Y. Lei, Y. Huang, K. Wang, X. He, J. Liu, A near-infrared light-responsive nanocomposite for photothermal release of H2S and suppression of cell viability, Journal of Materials Chemistry B. 7, 5992-5997, (2019)
  82. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?, Antioxidants & Redox Signaling. 31, 1-38, (2019)
  83. A. Raza, U. Hayat, T. Rasheed, M. Bilal, H.M.N. Iqbal, “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review, Journal of Materials Research and Technology. 8, 1497-1509, (2019)
  84. N. Yang, M. Zhu, G. Xu, N. Liu, C. Yu, A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion, Journal of Materials Chemistry B. 8, 3908-3917, (2020)
  85. H. Cui, S. Miao, T. Esworthy, S.-j. Lee, X. Zhou, S.Y. Hann, T.J. Webster, B.T. Harris, L.G. Zhang, A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation, Nano Research. 12, 1381-1388, (2019)
  86. T. Li, Y. Li, X. Wang, X. Li, J. Sun, Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function, ACS Applied Materials & Interfaces. 11, 9470-9477, (2019)

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP