JOURNAL OF CHILEAN CHEMICAL SOCIETY

Vol 62 No 1 (2017): Journal of the Chilean Chemical Society
Original Research Papers

TWO NOVEL TCPP PORPHYRINIC COMPOUNDS: IN SITU SYNTHESES, CHARACTERIZATION AND REACTION MECHANISM

Ding-Wa Zhang
Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University
Wen-Tong Chen
Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle (Nanchang Hangkong University) State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Published June 5, 2017
Keywords
  • Esterification,
  • In situ,
  • Porphyrin,
  • TCPP,
  • Zinc
How to Cite
Zhang, D.-W., & Chen, W.-T. (2017). TWO NOVEL TCPP PORPHYRINIC COMPOUNDS: IN SITU SYNTHESES, CHARACTERIZATION AND REACTION MECHANISM. Journal of the Chilean Chemical Society, 62(1). Retrieved from https://jcchems.com/index.php/JCCHEMS/article/view/153

Abstract

Two novel porphyrinic compounds, {Zn[TCPP(CH2CH3)2(CH3)2]}n (1) and TCPP(CH3)4 (2) (TCPP = meso-tetra(4-carboxyphenyl)porphyrin), with the TCPP(CH2CH3)2(CH3)2 and TCPP(CH3)4 generated in situ, have been synthesized via a solvothermal reaction and structurally characterized by single-crystal X-ray diffraction. Compound 1 is characteristic of a two-dimensional (2-D) coordination polymer, based on the zinc ion coordinating to four nitrogen atoms and two oxygen atoms. Compound 1 possesses a large void space (220 Å3) corresponding to 4.6% of the unit-cell volume. Compound 2 is characterized by an isolated structure. The reaction mechanism of preparing both compounds was explored. The photoluminescence properties, FT-IR, UV-vis absorption spectra, fluorescence lifetime and fluorescence quantum yield of TCPP were also reported. 

References

  1. Lu J. Y.. Coord. Chem. Rev., 246, 327–347 (2003).
  2. Chen X. M., Tong M. L.. Acc. Chem. Res., 40, 162–170 (2007).
  3. Benny P. D., Fugate G. A., Barden A. O., Morley J. E., Silva-Lopez E., Twamley B.. Inorg. Chem., 47, 2240–2242 (2008).
  4. Chen W.-T.. J. Chem. Res., 405–407 (2011).
  5. Chen W.-T., Hu L.. Acta Chim. Slov., 58, 167–170 (2011).
  6. Chen W.-T., Liu D.-S., Luo Z.-G., Chen H.-L., Liu J.-H.. J. Chem. Res., 491–493 (2011).
  7. Silva A. M. G., Tomé A. C., Neves M. G. P. M. S., Cavaleiro J. A. S.. Tetrahedron Lett., 41, 3065–3068 (2000).
  8. Tomé A. C., Lacerda P. S. S., Neves M. G. P. M. S., Cavaleiro J. A. S.. Chem. Commun., 1199–1200 (1997).
  9. Cavaleiro J. A. S., Neves M. G. P. M. S., Tomé A.C.. Arkivoc, 14, 107– 130 (2003).
  10. Chen W.-T., Liu D.-S., Xu Y.-P., Luo Q.-Y., Pei Y.-P.. Luminescence, 31, 158–163 (2016).
  11. Zhang X., Chen W.-T., Suenobu T., Fukuzumi S., Wang M.-S., Guo G.-C.. J. Porphyr. Phthalocya., 19, 1225–1231 (2015).
  12. Pei Y.-P., Huang J.-G., Chen H.-L., Kuang H.-M., Zhou J., Yang Y.-X., Chen W.-T.. J. Porphyr. Phthalocya., 19, 1140–1146 (2015).
  13. Chen W.-T., Huang J.-G., Lei X.-Y., Hu R.-H., Pei Y.-P., Yang Y.-X., Zhou J.. J. Iran. Chem. Soc., 13, 95–101 (2016).
  14. Rigaku, CrystalClear Version 1.35, Rigaku Corporation, Tokyo, Japan (2002).
  15. Siemens, SHELXTLTM Version 5 Reference Manual, Siemens Energy & Automation Inc., Madison, Wisconsin, USA (1994).
  16. Shultz D. A., Mussari C. P., Ramanathan K. K., Kampf J. W.. Inorg. Chem., 45, 5752–5759 (2006).
  17. Gros C. P., Brisach F., Meristoudi A., Espinosa E., Guilard R., Harvey P. D.. Inorg. Chem., 46, 125–135 (2007).
  18. Yang F.-A., Guo C.-W., Chen Y.-J., Chen J.-H., Wang S.-S., Tung J.-Y., Hwang L.-P., Elango S.. Inorg. Chem., 46, 578–585 (2007).
  19. Muniappan S., Lipstman S., Goldberg I.. Acta Crystallogr., Sect. C., 62, m495–m497 (2006).
  20. Muniappan S., Lipstman S., Goldberg I.. Acta Crystallogr., Sect. C., 62, m140–m143 (2006).

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP