Vol 65 No 3 (2020): Journal of the Chilean Chemical Society
Original Research Papers


Daniel A. Palacio
Departamento de Polimero, Facultad de Ciencias Químicas, Universidad de Concepción
Bernabé L. Rivas
Departamento de polímero, Facultad de Ciencias Químicas , Universidad de Concepción
Carla Muñoz Vega
Departamento de polímero, Facultad de Ciencias Químicas , Universidad de Concepción
Published September 10, 2020
  • Nalidixic acid,
  • antibiotic,
  • solvent,
  • ultraviolet spectra
How to Cite
Palacio , D. A., Rivas , B. L., & Muñoz Vega, C. (2020). EFFECT OF SOLVENT BEHAVIOR OF NALIDIXIC ACID BY ULTRAVIOLET SPECTROSCOPY. Journal of the Chilean Chemical Society, 65(3), 4885-4887. Retrieved from


One of the most widely used pharmaceuticals of the antibiotic type is quinolones. Nalidixic acid belongs to this family of antibiotics is widely used in both human and veterinary medicine. The objective of this work is to show the behavior of nalidixic acid in co-solvent mixtures, in order to study in the near future the removal of this antibiotic in aqueous solutions or mixtures of water with solvents. The study was carried out by preparing a standard solution containing 25 mg of nalidixic acid in 50 mL in different solvent mixtures. Subsequently, 20 mg L-1 solutions were prepared using the same mixture of solvents (acetone: water, methanol: water and ethanol: water) to be scanned for wavelengths by UV-Vis spectroscopy. The spectra showed signal displacement in all the mixtures when there was an increase with respect to the water contents due to the interaction of the water with the acid group of the antibiotic. While in mixtures of methanol: water and ethanol: water solutions, there is a variation of the signal intensities. As a conclusion, it can be said that it is important to consider the solubility capacity of this antibiotic in different solvents for the purposes of removal studies of this type of emerging contaminants of the antibiotic type.



  1. Robberson, K. A.; Waghe, A. B.; Sabatini, D. A.; Butler, E. C. Chemosphere 2006, 63, 934.
  2. Pollice, A.; Laera, G.; Cassano, D.; Diomede, S.; Pinto, A.; Lopez, A.; Mascolo, G. J. Hazard. Mater. 2012, 203–204, 46.
  3. Patiño, Y.; Díaz, E.; Ordóñez, S. Chem. Eng. J. 2016, 283, 486.
  4. Bisacchi, G. S. J. Med. Chem. 2015, 58, 4874.
  5. Wu, Q.; Li, Z.; Hong, H. Appl. Clay Sci. 2013, 74, 66.
  6. Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P. J. Mol. Struct. 2016, 1120, 115.
  7. Othman, S.; Muti, H.; Shaheen, O.; Awidi, A.; Al-Turk, W. A. Int. J. Pharm. 1988, 41, 197.
  8. Maheshwari, R.; Chaturvedi, S.; Jain, N. Indian J. Pharm. Sci. 2006, 68.
  9. Gindy, N. A. E.; Shalaby, A. A.; El-Khalek, H. H. A. Drug Dev. Ind. Pharm. 1983, 9, 363.
  10. Chaudhari, P.; Sharma, P.; Barhate, N.; Kulkarni, P.; Mistry, C. Curr. Sci. 2007, 92, 1586.
  11. Miyako, Y.; Khalef, N.; Matsuzaki, K.; Pinal, R. Int. J. Pharm. 2010, 393, 48.
  12. Miyako, Y.; Zhao, Y.; Takeshima, K.; Kataoka, T.; Handa, T.; Pinal, R. J. Pharm. Sci. 2010, 99, 293.
  13. Seedher, N.; Agarwal, P. Indian J. Pharm. Sci. 2009, 71, 82.
  14. Seedher, N.; Bhatia, S. AAPS Pharm. Sci.Tech. 2003, 4.
  15. Gadalla, M. A. F.; Ghaly, G. M.; Samaha, M. W. Int. J. Pharm. 1987, 38, 71.
  16. Marrassini, C.; Idrissi, A.; De Waele, I.; Smail, K.; Tchouar, N.; Moreau, M.; Mezzetti, A. J. Mol. Liq. 2015, 205, 2.
  17. Ross, D. L.; Riley, C. M. Int. J. Pharm. 1990, 63, 237.
  18. Hadad, G. M.; El-Gindy, A.; Mahmoud, W. M. M. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2008, 70, 655.
  19. Bostijn, N.; Hellings, M.; Van Der Veen, M.; Vervaet, C.; De Beer, T. Anal. Chim. Acta 2018, 1013, 54.
  20. Ekanayake, D.; Aryal, R.; Hasan Johir, M. A.; Loganathan, P.; Bush, C.; Kandasamy, J.; Vigneswaran, S. Chemosphere 2019, 233, 245.
  21. Tous, S. S.; El Sayed, A. M.; Abd El Mohsen, M. G.; Agban, M. N.; Boushra, M. F. J. Drug Deliv. Sci. Technol. 2012, 22, 341.
  22. Grubb, P. E. In Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic Press, 1979; Vol. 8, pp 371.
  23. Kolář, P.; Shen, J.-W.; Tsuboi, A.; Ishikawa, T. Fluid Phase Equilibria 2002, 194–197, 771.

Copyright @2019 | Designed by: Open Journal Systems Chile Logo Open Journal Systems Chile Support OJS, training, DOI, Indexing, Hosting OJS

Code under GNU license: OJS PKP